首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   3篇
  国内免费   1篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   8篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   2篇
  2008年   2篇
  2007年   3篇
  2006年   3篇
  2005年   4篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   3篇
  1994年   2篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1975年   1篇
排序方式: 共有57条查询结果,搜索用时 15 毫秒
51.
The mammalian osteopetroses represent a pathogenetically diverse group of skeletal disorders characterized by excess bone mass resulting from reduced osteoclastic bone resorption. Abnormalities involving osteoblast function and skeletal development have also been reported in many forms of the disease. In this study, we used the rat mutation, osteopetrosis (op), to examine differences in skeletal gene expression between op mutants and their normal littermates. RNA isolated from calvaria and long bones was used as a template for mRNA-differential display. Sequence information for one of the many cDNA that were selectively expressed in either normal or mutant bone suggested that it is the rat homologue of connective tissue growth factor (CTGF) previously cloned in the human, mouse, and other species. A consensus sequence was assembled from overlapping 5'-RACE clones and used to confirm the rat CTGF cDNA protein coding region. Northern blot analysis confirmed that this message was highly (8- to 10-fold) over-expressed in op versus normal bone; it was also upregulated in op kidney but none of the other tissues (brain, liver, spleen, thymus) examined. In primary rat osteoblast cultures, the CTGF message exhibits a temporal pattern of expression dependent on their state of differentiation. Furthermore, CTGF expression is regulated by prostaglandin E(2), a factor known to modulate osteoblast differentiation. Since members of the CTGF family regulate the expression of specific genes, such as collagen and fibronectin, we propose that CTGF may play a previously unreported role in normal skeletal modeling/remodeling. Its dramatic over-expression in the op mutant skeleton may be secondary to the uncoupling of bone resorption and bone formation resulting in dysregulation of osteoblast gene expression and function.  相似文献   
52.
53.
The mitochondrial inner membrane contains a large protein complex that functions in inner membrane organization and formation of membrane contact sites. The complex was variably named the mitochondrial contact site complex, mitochondrial inner membrane organizing system, mitochondrial organizing structure, or Mitofilin/Fcj1 complex. To facilitate future studies, we propose to unify the nomenclature and term the complex “mitochondrial contact site and cristae organizing system” and its subunits Mic10 to Mic60.Mitochondria possess two membranes of different architecture and function (Palade, 1952; Hackenbrock, 1968). Both membranes work together for essential shared functions, such as protein import (Schatz, 1996; Neupert and Herrmann, 2007; Chacinska et al., 2009). The outer membrane harbors machinery that controls the shape of the organelle and is crucial for the communication of mitochondria with the rest of the cell. The inner membrane harbors the complexes of the respiratory chain, the F1Fo-ATP synthase, numerous metabolite carriers, and enzymes of mitochondrial metabolism. It consists of two domains: the inner boundary membrane, which is adjacent to the outer membrane, and invaginations of different shape, termed cristae (Werner and Neupert, 1972; Frey and Mannella, 2000; Hoppins et al., 2007; Pellegrini and Scorrano, 2007; Zick et al., 2009; Davies et al., 2011). Tubular openings, termed crista junctions (Perkins et al., 1997), connect inner boundary membrane and cristae membranes (Fig. 1, A and B). Respiratory chain complexes and the F1Fo-ATP synthase are preferentially located in the cristae membranes, whereas preprotein translocases are enriched in the inner boundary membrane (Vogel et al., 2006; Wurm and Jakobs, 2006; Davies et al., 2011). Contact sites between outer membrane and inner boundary membrane promote import of preproteins, metabolite channeling, lipid transport, and membrane dynamics (Frey and Mannella, 2000; Sesaki and Jensen, 2004; Hoppins et al., 2007, 2011; Neupert and Herrmann, 2007; Chacinska et al., 2009; Connerth et al., 2012; van der Laan et al., 2012).Open in a separate windowFigure 1.MICOS complex. (A) The MICOS complex (hypothetical model), previously also termed MINOS, MitOS, or Mitofilin/Fcj1 complex, is required for maintenance of the characteristic architecture of the mitochondrial inner membrane (IM) and forms contact sites with the outer membrane (OM). In budding yeast, six subunits of MICOS have been identified. All subunits are exposed to the intermembrane space (IMS), five are integral inner membrane proteins (Mic10, Mic12, Mic26, Mic27, and Mic60), and one is a peripheral inner membrane protein (Mic19). Mic26 is related to Mic27; however, mic26Δ yeast cells show considerably less severe defects of mitochondrial inner membrane architecture than mic27Δ cells (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011). The MICOS complex of metazoa additionally contains Mic25, which is related to Mic19, yet subunits corresponding to Mic12 and Mic26 have not been identified so far. MICOS subunits that have been conserved in most organisms analyzed are indicated by bold boundary lines. (B, top) Wild-type architecture of the mitochondrial inner membrane with crista junctions and cristae. (bottom) This architecture is considerably altered in micos mutant mitochondria: most cristae membranes are detached from the inner boundary membrane and form internal membrane stacks. In some micos mutants (deficiency of mammalian Mic19 or Mic25), a loss of cristae membranes was observed (Darshi et al., 2011; An et al., 2012). Figure by M. Bohnert (Institute of Biochemistry and Molecular Biology, University of Freiburg, Freiburg, Germany).To understand the complex architecture of mitochondria, it will be crucial to identify the molecular machineries that control the interaction between mitochondrial outer and inner membranes and the characteristic organization of the inner membrane. A convergence of independent studies led to the identification of a large heterooligomeric protein complex of the mitochondrial inner membrane conserved from yeast to humans that plays crucial roles in the maintenance of crista junctions, inner membrane architecture, and formation of contact sites to the outer membrane (Fig. 1 A). Several names were used by different research groups to describe the complex, including mitochondrial contact site (MICOS) complex, mitochondrial inner membrane organizing system (MINOS), mitochondrial organizing structure (MitOS), Mitofilin complex, or Fcj1 (formation of crista junction protein 1) complex (Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012). Mitofilin, also termed Fcj1, was the first component identified (Icho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005) and was observed enriched at crista junctions (Rabl et al., 2009). Mutants of Mitofilin/Fcj1 as well as of other MICOS/MINOS/MitOS subunits show a strikingly altered inner membrane architecture. They lose crista junctions and contain large internal membrane stacks, the respiratory activity is reduced, and mitochondrial DNA nucleoids are altered (Fig. 1 B; John et al., 2005; Hess et al., 2009; Rabl et al., 2009; Mun et al., 2010; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013). It has been reported that the complex interacts with a variety of outer membrane proteins, such as channel proteins and components of the protein translocases and mitochondrial fusion machines, and defects impair the biogenesis of mitochondrial proteins (Xie et al., 2007; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Körner et al., 2012; Ott et al., 2012; Zerbes et al., 2012; Jans et al., 2013; Weber et al., 2013). The MICOS/MINOS/MitOS/Mitofilin/Fcj1 complex thus plays crucial roles in mitochondrial architecture, dynamics, and biogenesis. However, communication of results in this rapidly developing field has been complicated by several different nomenclatures used for the complex as well as for its subunits (
Standard nameFormer namesYeast ORFReferences
Complex
MICOSMINOS, MitOS, MIB, Mitofilin complex, and Fcj1 complexXie et al., 2007; Rabl et al., 2009; Darshi et al., 2011; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; An et al., 2012; Bohnert et al., 2012; Ott et al., 2012; Jans et al., 2013; Weber et al., 2013
Subunits
Mic10Mcs10, Mio10, Mos1, and MINOS1YCL057C-AHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Alkhaja et al., 2012; Itoh et al., 2013; Jans et al., 2013; Varabyova et al., 2013
Mic12Aim5, Fmp51, and Mcs12YBR262CHess et al., 2009; Harner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Varabyova et al., 2013
Mic19Aim13, Mcs19, CHCH-3, CHCHD3, and MINOS3YFR011CXie et al., 2007; Hess et al., 2009; Darshi et al., 2011; Head et al., 2011; Alkhaja et al., 2012; Ott et al., 2012; Jans et al., 2013; Varabyova et al., 2013
Mic25 (metazoan Mic19 homologue)CHCHD6 and CHCM1Xie et al., 2007; An et al., 2012
Mic26Mcs29, Mio27, and Mos2YGR235CHarner et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011
Mic27Aim37, Mcs27, APOOL, and MOMA-1YNL100WHess et al., 2009; Harner et al., 2011; Head et al., 2011; Hoppins et al., 2011; von der Malsburg et al., 2011; Weber et al., 2013
Mic60Fcj1, Aim28, Fmp13, Mitofilin, HMP, IMMT, and MINOS2YKR016WIcho et al., 1994; Odgren et al., 1996; Gieffers et al., 1997; John et al., 2005; Wang et al., 2008; Rabl et al., 2009; Rossi et al., 2009; Mun et al., 2010; Park et al., 2010; Körner et al., 2012; Zerbes et al., 2012; Itoh et al., 2013; Varabyova et al., 2013
Open in a separate windowAPOOL, apolipoprotein O–like; HMP, heart muscle protein; IMMT, inner mitochondrial membrane protein; MIB, mitochondrial intermembrane space bridging.To rectify this situation, all authors of this article have agreed on a new uniform nomenclature with the following guidelines. (a) The complex will be called “mitochondrial contact site and cristae organizing system” (MICOS). The protein subunits of MICOS are named Mic10 to Mic60 as listed in Gabriel et al., 2007; Vögtle et al., 2012) will be changed to Mix14, Mix17, and Mix23 (mitochondrial intermembrane space CXnC motif proteins) in the Saccharomyces Genome Database, and the new nomenclature will be used for orthologues identified in other organisms.The MICOS complex is of central importance for the maintenance of mitochondrial inner membrane architecture and the formation of contact sites between outer and inner membranes and thus is involved in the regulation of mitochondrial dynamics, biogenesis, and inheritance. We expect that the uniform nomenclature will facilitate future studies on mitochondrial membrane architecture and dynamics.  相似文献   
54.
RhoA signaling modulates cyclin D1 expression in human lung fibroblasts; implications for idiopathic pulmonary fibrosis     
KL Watts  E Cottrell  PR Hoban  MA Spiteri 《Respiratory research》2006,7(1):1-14

Background

To elucidate further the pathogenesis of sporadic, idiopathic pulmonary arterial hypertension (IPAH) and identify potential therapeutic avenues, differential gene expression in IPAH was examined by suppression subtractive hybridisation (SSH).

Methods

Peripheral lung samples were obtained immediately after removal from patients undergoing lung transplant for IPAH without familial disease, and control tissues consisted of similarly sampled pieces of donor lungs not utilised during transplantation. Pools of lung mRNA from IPAH cases containing plexiform lesions and normal donor lungs were used to generate the tester and driver cDNA libraries, respectively. A subtracted IPAH cDNA library was made by SSH. Clones isolated from this subtracted library were examined for up regulated expression in IPAH using dot blot arrays of positive colony PCR products using both pooled cDNA libraries as probes. Clones verified as being upregulated were sequenced. For two genes the increase in expression was verified by northern blotting and data analysed using Student's unpaired two-tailed t-test.

Results

We present preliminary findings concerning candidate genes upregulated in IPAH. Twenty-seven upregulated genes were identified out of 192 clones examined. Upregulation in individual cases of IPAH was shown by northern blot for tissue inhibitor of metalloproteinase-3 and decorin (P < 0.01) compared with the housekeeping gene glyceraldehydes-3-phosphate dehydrogenase.

Conclusion

Four of the up regulated genes, magic roundabout, hevin, thrombomodulin and sucrose non-fermenting protein-related kinase-1 are expressed specifically by endothelial cells and one, muscleblind-1, by muscle cells, suggesting that they may be associated with plexiform lesions and hypertrophic arterial wall remodelling, respectively.  相似文献   
55.
Cell cycle-dependent modifications in activities of pRb-related tumor suppressors and proliferation-specific CDP/cut homeodomain factors in murine hematopoietic progenitor cells     
Andr J. van Wijnen  Cathleen Cooper  Paul Odgren  Farah Aziz  Antonio De Luca  Rauf A. Shakoori  Antonio Giordano  Peter J. Quesenberry  Jane B. Lian  Gary S. Stein  Janet L. Stein 《Journal of cellular biochemistry》1997,66(4):512-523
  相似文献   
56.
The host metabolite D-serine contributes to bacterial niche specificity through gene selection     
James PR Connolly  Robert J Goldstone  Karl Burgess  Richard J Cogdell  Scott A Beatson  Waldemar Vollmer  David GE Smith  Andrew J Roe 《The ISME journal》2015,9(4):1039-1051
  相似文献   
57.
Fishers' knowledge and seahorse conservation in Brazil     
Ierecê ML Rosa  Rômulo RN Alves  Kallyne M Bonifácio  José S Mourão  Frederico M Osório  Tacyana PR Oliveira  Mara C Nottingham 《Journal of ethnobiology and ethnomedicine》2005,1(1):1-15
From a conservationist perspective, seahorses are threatened fishes. Concomitantly, from a socioeconomic perspective, they represent a source of income to many fishing communities in developing countries. An integration between these two views requires, among other things, the recognition that seahorse fishers have knowledge and abilities that can assist the implementation of conservation strategies and of management plans for seahorses and their habitats. This paper documents the knowledge held by Brazilian fishers on the biology and ecology of the longsnout seahorse Hippocampus reidi. Its aims were to explore collaborative approaches to seahorse conservation and management in Brazil; to assess fishers' perception of seahorse biology and ecology, in the context evaluating potential management options; to increase fishers' involvement with seahorse conservation in Brazil. Data were obtained through questionnaires and interviews made during field surveys conducted in fishing villages located in the States of Piauí, Ceará, Paraíba, Maranhão, Pernambuco and Pará. We consider the following aspects as positive for the conservation of seahorses and their habitats in Brazil: fishers were willing to dialogue with researchers; although captures and/or trade of brooding seahorses occurred, most interviewees recognized the importance of reproduction to the maintenance of seahorses in the wild (and therefore of their source of income), and expressed concern over population declines; fishers associated the presence of a ventral pouch with reproduction in seahorses (regardless of them knowing which sex bears the pouch), and this may facilitate the construction of collaborative management options designed to eliminate captures of brooding specimens; fishers recognized microhabitats of importance to the maintenance of seahorse wild populations; fishers who kept seahorses in captivity tended to recognize the condtions as poor, and as being a cause of seahorse mortality.  相似文献   
[首页] « 上一页 [1] [2] [3] [4] [5] 6
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号