首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2175篇
  免费   106篇
  2022年   7篇
  2021年   23篇
  2020年   11篇
  2019年   20篇
  2018年   27篇
  2017年   34篇
  2016年   51篇
  2015年   70篇
  2014年   80篇
  2013年   139篇
  2012年   129篇
  2011年   141篇
  2010年   95篇
  2009年   84篇
  2008年   169篇
  2007年   145篇
  2006年   163篇
  2005年   147篇
  2004年   137篇
  2003年   144篇
  2002年   146篇
  2001年   20篇
  2000年   14篇
  1999年   23篇
  1998年   32篇
  1997年   31篇
  1996年   22篇
  1995年   21篇
  1994年   5篇
  1993年   19篇
  1992年   12篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   6篇
  1987年   8篇
  1986年   6篇
  1985年   7篇
  1984年   10篇
  1983年   4篇
  1982年   8篇
  1981年   7篇
  1980年   12篇
  1979年   4篇
  1978年   5篇
  1977年   3篇
  1976年   4篇
  1973年   2篇
  1971年   2篇
  1969年   2篇
排序方式: 共有2281条查询结果,搜索用时 593 毫秒
991.
It has been reported that the loss of apicobasal cell polarity and the disruption of adherens junctions induce hyperplasia in the mouse developing brain. However, it is not fully understood whether hyperplasia is caused by an enhanced cell proliferation, an inhibited neurogenesis, or both. In this study, we found that the ratio of the number of proliferating progenitor cells to the total number of retinal cells increases in the neurogenic stages in zebrafish n-cadherin (ncad) and nagie oko (nok) mutants, in which the apicobasal cell polarity and adherens junctions in the retinal epithelium are disrupted. The cell-cycle progression was not altered in the ncad and nok mutants. Rather, the ratio of the number of cells undergoing neurogenic cell division to the total number of cells undergoing mitosis decreased in the ncad and nok mutant retinas, suggesting that the switching from proliferative cell division to neurogenic cell division was compromised in these mutant retinas. These findings suggest that the inhibition of neurogenesis is a primary defect that causes hyperplasia in the ncad and nok mutant retinas. The Hedgehog-protein kinase A signaling pathway and the Notch signaling pathway regulate retinal neurogenesis in zebrafish. We found that both signaling pathways are involved in the generation of neurogenic defects in the ncad and nok mutant retinas. Taken together, these findings suggest that apicobasal cell polarity and epithelial integrity are essential for retinal neurogenesis in zebrafish.  相似文献   
992.
Epithelial-derived thymic stromal lymphopoietin (TSLP) is an IL-7-like cytokine that triggers dendritic cell (DC)-mediated Th2-type inflammatory responses. The activated DCs can penetrate the epithelium to directly take up antigen without compromising the barrier function. Although it is reported that DCs express tight junction molecules and can establish tight junction-like structures with adjacent epithelial cells to preserve the epithelial barrier, the regulation of expression of tight junction molecules in DCs remains unknown. In the present study, to investigate the mechanical regulation of expression of tight junction molecules in DCs, XS52 DCs that was a long-term DC line established from the epidermis of a newborn BALB/c mouse, were treated with TSLP or toll-like receptor (TLR) ligands. In XS52 cells, tight junction molecules claudin-1, -3, -4, -6, -7, -8, and occludin were detected. mRNA expression of TSLP receptor and all these tight junction molecules was significantly increased in activated XS52 cells after treatment with TSLP. In addition, expression of claudin-7 protein was increased in dose- and time-dependent manner. In XS52 cells, which express TLR2, TLR3, TLR4, and TLR7, but not TLR9, expression of claudin-7 protein was also increased after treatment with ligands of TLR2, TLR4 or TLR7/8, Pam3Cys-Ser-(Lys)4, LPS, or CL097. The NF-κB inhibitor IMD-0354 prevented upregulation of claudin-7 after treatment with TSLP or TLR ligands. These findings indicate that TSLP induces expression of tight junction protein claudin-7 in DCs via NF-κB as well as via TLRs and may control tight junctions of DCs to preserve the epithelial barrier during allergic inflammation.  相似文献   
993.
Novel naltrexone derivatives 7 and 8 with contracted and expanded D-rings were synthesized to investigate the importance of orientation of lone electron pair on the nitrogen for binding abilities to the opioid receptor. Compound 7 showed almost no binding affinity, whereas compound 8 was comparable to naltrexone (6) in binding affinity. Conformational analyses and NOE experiments in D2O of compounds 68 suggested that the lone electron pairs of compounds 6 and 8 with respective six- and seven-membered D-rings would project in the pseudo-axial orientation, whereas compound 7 with five-membered D-ring would have the lone electron pair directing in pseudo-equatorial position. These results strongly supported the proposal that the axial orientation of the lone electron pair on nitrogen would provide sufficient binding abilities to the opioid receptor and that the 15–16 ethylene moiety in the morphine structure would play a role in fixation of the lone electron pair in the axial direction rather than interaction with the putative cavity in the Beckett–Casy model.  相似文献   
994.
995.
Autoinflammatory disease (AID) manifests from the dysregulation of the innate immune system and is characterised by systemic and persistent inflammation. Clinical heterogeneity leads to patients presenting with one or a spectrum of phenotypic signs, leading to difficult diagnoses in the absence of a clear genetic cause. We used separate genome-wide SNP analyses to investigate five signs of AID (recurrent fever, arthritis, breed specific secondary dermatitis, otitis and systemic reactive amyloidosis) in a canine comparative model, the pure bred Chinese Shar-Pei. Analysis of 255 DNA samples revealed a shared locus on chromosome 13 spanning two peaks of association. A three-marker haplotype based on the most significant SNP (p<2.6×10−8) from each analysis showed that one haplotypic pair (H13-11) was present in the majority of AID individuals, implicating this as a shared risk factor for all phenotypes. We also noted that a genetic signature (F ST) distinguishing the phenotypic extremes of the breed specific Chinese Shar-Pei thick and wrinkled skin, flanked the chromosome 13 AID locus; suggesting that breed development and differentiation has played a parallel role in the genetics of breed fitness. Intriguingly, a potential modifier locus for amyloidosis was revealed on chromosome 14, and an investigation of candidate genes from both this and the chromosome 13 regions revealed significant (p<0.05) renal differential expression in four genes previously implicated in kidney or immune health (AOAH, ELMO1, HAS2 and IL6). These results illustrate that phenotypic heterogeneity need not be a reflection of genetic heterogeneity, and that genetic modifiers of disease could be masked if syndromes were not first considered as individual clinical signs and then as a sum of their component parts.  相似文献   
996.

Background

This study investigated the major clinical determinants of late gadolinium enhancement (LGE) at ventricular insertion points (VIPs) commonly seen in patients with pulmonary hypertension (PH).

Methods

Forty-six consecutive PH patients (mean pulmonary artery pressure ≥25 mmHg at rest) and 21 matched controls were examined. Right ventricular (RV) morphology, function and LGE mass volume at VIPs were assessed by cardiac magnetic resonance (CMR). Radial motion of the left ventricular (LV) wall and interventricular septum (IVS) was assessed by speckle-tracking echocardiography. Paradoxical IVS motion index was then calculated. Univariate and multivariate regression analysis were conducted to characterize the relationship between LGE volume at VIPs and PH-related clinical indices, including the paradoxical IVS motion index.

Results

Mean pulmonary arterial pressure (MPAP) of PH patients was 38±9 mmHg. LGE at VIPs was observed in 42 of 46 PH patients, and the LGE volume was 2.02 mL (0.47–2.99 mL). Significant correlations with LGE volume at VIPs were observed for MPAP (r = 0.50) and CMR-derived parameters [RV mass index (r = 0.53), RV end-diastolic volume index (r = 0.53), RV ejection fraction (r = −0.56), and paradoxical IVS motion index (r = 0.77)]. In multiple regression analysis, paradoxical IVS motion index alone significantly predicted LGE volume at VIPs (p<0.001).

Conclusions

LGE at VIPs seen in patients with PH appears to reflect altered IVS motion rather than elevated RV pressure or remodeling. Long-term studies would be of benefit to characterize the clinical relevance of LGE at VIPs.  相似文献   
997.
Recent generation of patient-specific induced pluripotent stem cells (PS-iPSCs) provides significant advantages for cell- and gene-based therapy. Establishment of iPSC-based therapy for skin diseases requires efficient methodology for differentiating iPSCs into both keratinocytes and fibroblasts, the major cellular components of the skin, as well as the reconstruction of skin structures using these iPSC-derived skin components. We previously reported generation of keratinocytes from human iPSCs for use in the treatment of recessive dystrophic epidermolysis bullosa (RDEB) caused by mutations in the COL7A1 gene. Here, we developed a protocol for differentiating iPSCs into dermal fibroblasts, which also produce type VII collagen and therefore also have the potential to treat RDEB. Moreover, we generated in vitro 3D skin equivalents composed exclusively human iPSC-derived keratinocytes and fibroblasts for disease models and regenerative therapies for skin diseases, first demonstrating that iPSCs can provide the basis for modeling a human organ derived entirely from two different types of iPSC-derived cells.  相似文献   
998.
Brain metabolite concentrations change dynamically throughout development, especially during early childhood. The purpose of this study was to investigate the brain metabolite concentrations of neonates (postconceptional age (PCA): 30 to 43 weeks) using single-voxel magnetic resonance spectroscopy (MRS) and to discuss the relationships between the changes in the concentrations of such metabolites and brain development during the neonatal period. A total of 83 neonatal subjects were included using the following criteria: the neonates had to be free of radiological abnormalities, organic illness, and neurological symptoms; the MR spectra had to have signal-to-noise ratios ≥ 4; and the estimated metabolite concentrations had to display Cramér-Rao lower bounds of ≤ 30%. MRS data (echo time/repetition time, 30/5000 ms; 3T) were acquired from the basal ganglia (BG), centrum semiovale (CS), and the cerebellum. The concentrations of five metabolites were measured: creatine, choline, N-acetylaspartate, myo-inositol, and glutamate/glutamine complex (Glx). One hundred and eighty-four MR spectra were obtained (83 BG, 77 CS, and 24 cerebellum spectra). Creatine, N-acetylaspartate, and Glx displayed increases in their concentrations with PCA. Choline was not correlated with PCA in any region. As for myo-inositol, its concentration decreased with PCA in the BG, whereas it increased with PCA in the cerebellum. Quantitative brain metabolite concentrations and their changes during the neonatal period were assessed. Although the observed changes were partly similar to those detected in previous reports, our results are with more subjects (n = 83), and higher magnetic field (3T). The metabolite concentrations examined in this study and their changes are clinically useful indices of neonatal brain development.  相似文献   
999.
Growth factors and nutrients, such as amino acids and glucose, regulate mammalian target of rapamycin complex 1 (mTORC1) signaling and subsequent translational control in a coordinated manner. Brain‐derived neurotrophic factor (BDNF), the most prominent neurotrophic factor in the brain, activates mTORC1 and induces phosphorylation of its target, p70S6 kinase (p70S6K), at Thr389 in neurons. BDNF also increases mammalian target of rapamycin‐dependent novel protein synthesis in neurons. Here, we report that BDNF‐induced p70S6K activation is dependent on glucose, but not amino acids, sufficiency in cultured cortical neurons. AMP‐activated protein kinase (AMPK) is the molecular background to this specific nutrient dependency. Activation of AMPK, which is induced by glucose deprivation, treatment with pharmacological agents such as 2‐Deoxy‐d ‐glucose, metformin, and 5‐aminoimidazole‐4‐carboxamide ribonucleoside or forced expression of a constitutively active AMPKα subunit, counteracts BDNF‐induced phosphorylation of p70S6K and enhanced protein synthesis in cortical neurons. These results indicate that AMPK inhibits the effects of BDNF on mTORC1‐mediated translation in neurons.

  相似文献   

1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号