首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1379篇
  免费   67篇
  国内免费   1篇
  2023年   19篇
  2022年   13篇
  2021年   59篇
  2020年   36篇
  2019年   27篇
  2018年   46篇
  2017年   36篇
  2016年   50篇
  2015年   59篇
  2014年   75篇
  2013年   125篇
  2012年   115篇
  2011年   103篇
  2010年   59篇
  2009年   49篇
  2008年   68篇
  2007年   61篇
  2006年   52篇
  2005年   46篇
  2004年   45篇
  2003年   43篇
  2002年   32篇
  2001年   12篇
  2000年   12篇
  1999年   17篇
  1998年   9篇
  1997年   10篇
  1996年   10篇
  1995年   5篇
  1994年   14篇
  1993年   11篇
  1992年   9篇
  1991年   5篇
  1990年   8篇
  1988年   8篇
  1987年   9篇
  1986年   7篇
  1985年   6篇
  1984年   8篇
  1983年   5篇
  1982年   6篇
  1979年   6篇
  1977年   5篇
  1976年   3篇
  1973年   4篇
  1972年   3篇
  1971年   5篇
  1970年   4篇
  1969年   5篇
  1966年   3篇
排序方式: 共有1447条查询结果,搜索用时 307 毫秒
11.
Pseudomonas pseudomallei exotoxin was found to be a potent inhibitor of protein and DNA synthesis in cultured macrophages. Inhibition of DNA synthesis occurred at toxin concentrations as low as 1-2 micrograms/ml and inhibition of 3H-thymidine uptake was almost complete at concentrations of 8 micrograms/ml or more. A close correlation between cell damage and inhibition by DNA synthesis was observed. For protein synthesis, inhibition was obtained at much lower doses (0.06-2.0 micrograms/ml) of the toxin. At similar toxin concentrations, DNA synthesis was marginally affected. Further, it was shown that protein synthesis inhibition occurred almost immediately after incubation, reaching its maximal inhibitory effect of 70% after 6 hr. DNA synthesis, however, was minimally affected by a similar toxin concentration even after 10 hr of incubation. The inhibition of macromolecular synthesis in macrophages by P. pseudomallei exotoxin may be relevant to its modulatory effect on the host defense mechanism.  相似文献   
12.
T I Ismail 《Plastic and reconstructive surgery》1990,86(3):573-6; discussion 577-8
A modification of the dorsalis pedis artery island flap is presented. In this modification, the deep fascia of the dorsum of the foot with part or the whole of the extensor digitorum brevis muscle is used as a fascial or myofascial flap supplied by the dorsalis pedis artery and covered by a split-thickness skin graft. The purpose is to decrease the morbidity of the donor site, which is closed by direct sutures without skin grafting. Four cases are reported with minimal donor-site morbidity and full survival of the flaps. The mean follow-up period is 17 months.  相似文献   
13.
Evidence is presented here to show that 20-hydroxyecdysone is essential for the activation of the larval fat body for differential uptake of larval haemolymph proteins (LHPs). By using radiolabelled LHPs it is shown that the fat body cells of Corcyra cephalonica selectively incorporate LHPs during late-larval and prepupal development. Fluorographic analysis of the labelled fat body proteins from prepupal stage separated on sodium dodecyl-sulphate polyacrylamide gels suggests that the LHPs are sequestered without any degradation. Although, during the last larval instar the uptake of all the three LHPs (LHP 1, LHP 2 and LHP 3) by the fat body cells is very low, 20-hydroxyecdysone treatment of early, mid or late-last instars causes a significant increase in uptake of all the three LHPs. However, the response to hormone treatment was more pronounced in late-last instar when compared to early and mid-last instar.  相似文献   
14.
Twenty one fungal isolates belonging to 7 genera were screened for ureolytic activity. APenicillium waksmanii isolate was found to be the most potent and was selected for further study. No ammonia-nitrogen was detected inP. waksmanii cultures either urea-free or containing up to 1 g urea per L. The maximum extracellular urease production was recorded at a urea concentration of 15 g/L. It peaked after 6 d of incubation at 25°C when the initial pH of the glucose—peptone broth was adjusted to 6. On the other hand, the highest fungus biomass was detected at a concentration of 2 g urea per L after 4 d of incubation at 35°C when the pH of the medium was 8. The intracellular urease activity (measured in cell-free extract) was the highest at 12 mg urea per mL after 75-min incubation at 25°C at pH 8. Incubation temperature of 25°C favored both urease production and activity.  相似文献   
15.
Production of peaches (Prunus persica (L.) Batsch) for both local market and export is increasing each year in Egypt. Brown rot disease, caused by Monilinia laxa and Monilinia fructigena, is considered one of the most important postharvest rots affecting peaches in Egypt and economic losses are increasing. Antifungal activity of glycyrrhizic acid nanoparticles (GA-NPs) and glycyrrhizic acid (GA) at 0.2 and 0.4 mmol/L was investigated as a control for both these brown rot pathogens on peach fruits in both in vitro and in vivo studies. In the in vitro studies, GA-NPs were the most effective as shown by the ability to decrease linear growth of both brown rot pathogens in potato dextrose agar (PDA) amended with 0.4 mmol/L GA-NPs. Micrographs of M. fructigena exposed to 0.4 mmol/LGA showed mycelial deformations, nodule formation, detachment of the cell wall, shrinkage and inhomogeneous cytoplasmic materials with large vacuoles. Mycelium of M. laxa exposed to 0.4 mmol/ LGA-NPs resulted in thinner and distorted hyphae, nodule formation, cell wall thinning, and swellings. The GANPs and GA treatments improved fruit quality by maintaining firmness and total soluble solids (TSS). GA-NPs were more effective in decreasing decay incidence than their bulk material. The 0.4 mmol/L GA-NPs completely inhibited the disease on naturally infected peach fruits for both seasons of 2018 and 2019. Furthermore, 0.4 mmol/L GA-NPs reduced the disease incidence in inoculated fruits by 95 (M. laxa) and 88% (M. fructigena) in 2018 season and 96 (M. laxa) and 85% (M. fructigena) in 2019 season. In conclusion, GA-NPs could enhance the resistance of peaches against brown rot caused by M. laxa and M. fructigena.  相似文献   
16.
Type 1 diabetes is characterized by insulin deficiency due to the destruction of pancreatic β cells, leading to hyperglycemia, which in turn induces vascular complications. In the current study, we investigated the effect of intraperitoneal administration of clove essential oil (CEO: 20 mg/kg body weight) on certain oxidative stress and glucose metabolism enzymes, as well as the expression of proinflammatory mediators. Administration of CEO to diabetic rats showed a significant decline in blood glucose levels, total cholesterol, and xanthine oxidase, compared to the streptozotocin group. Furthermore, these treated rats elicited a notable attenuation in the levels of lipid peroxides, and thiols groups in both liver and brain tissues. The activities of antioxidant and metabolic enzymes were reverted to normality in diabetic upon CEO administration. In addition to its protective effects on red blood cell hemolysis, CEO is a potent α-amylase inhibitor with an IC50=298.0±2.75 μg/mL. Also, treatment of diabetic rats with CEO significantly reduced the iNOS expression in the spleen. Our data showed that CEO has potential beneficial effects on diabetes, which can possibly prevent the pathogenesis of diabetic micro- and macrovascular complications.  相似文献   
17.
In this work, the synthesis, characterization, and biological activities of a new series of 1,3,4-thiadiazole derivatives were investigated. The structures of final compounds were identified using 1H-NMR, 13C-NMR, elemental analysis, and HRMS. All the new synthesized compounds were then screened for their antimicrobial activity against four types of pathogenic bacteria and one fungal strain, by application of the MIC assays, using Ampicilin, Gentamycin, Vancomycin, and Fluconazole as standards. Among the compounds, the MIC values of 4 and 8 μg/mL of the compounds 3f and 3g , respectively, are remarkable and indicate that these compounds are good candidates for antifungal activity. The docking experiments were used to identify the binding forms of produced ligands with sterol 14-demethylase to acquire insight into relevant proteins. The MD performed about 100 ns simulations to validate selected compounds’ theoretical studies. Finally, using density functional theory (DFT) to predict reactivity, the chemical characteristics and quantum factors of synthesized compounds were computed. These results were then correlated with the experimental data. Furthermore, computational estimation was performed to predict the ADME properties of the most active compound 3f .  相似文献   
18.
In the context of the proposed work, two different amino acids (Glycine, Phenylalanine) have interacted with copper ions in a phosphate buffer (PBS) in place of enzymes. This interaction resulted in the nucleation of copper phosphate crystals and the formation of flower-shaped amino acid-copper hybrid nanostructures (AA-hNFs), which grew through self-assembly. While Cu (II) ions in the structure of AA-hNFs were used as Fenton's agent for the catalytic activity. SEM, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy measurements were used to define the AA-hNFs′ characterisation. The peroxidase-like activities of AA-hNFs were investigated by UV/VIS spectrophotometer. Metal nanoparticles have peroxidase-like activity. A class of enzymes known as peroxidases is able to catalyze the conversion of hydrogen peroxide into hydroxyl radicals. These radicals also take part in electron transfers with substrates, which results in color during oxidation. When cupric oxide nanoparticles are added to the peroxidase substrate while H2O2 is present, a blue color product with a maximum absorbance at=652 nm can result, demonstrating the catalytic activity of a peroxidase. The morphology and composition of AA-hNFs were carefully characterized and the synthesized parameters were optimized systematically. Results showed that the nanoparticles were dispersed with an average diameter of 7–9 μm and indicated a uniform flower shape. The results of the investigation are anticipated to significantly advance a number of technical and scientific sectors.  相似文献   
19.
Dreshaj, Ismail A., Musa A. Haxhiu, Charles F. Potter, FatonH. Agani, and Richard J. Martin. Maturational changes in responsesof tissue and airway resistance to histamine. J. Appl.Physiol. 81(4): 1785-1791, 1996.We determinedhow postnatal maturation affects the relative contributions of airwaysand lung parenchyma to pulmonary resistance(RL) and whether there are developmental differences in their respective responses to constrictive agents. We studied open-chest ventilated anesthetized piglets of threeages: 2-4 days, 2-3 wk, and 10 wk.RL was partitioned into tissue(Rti) and airway (Raw) resistance by means of alveolar capsules underbaseline conditions and after intravenous histamine. Postnatalmaturation was associated with a progressive decline inRL, Rti, and Raw and with anincrease in the contribution of Rti toRL from 38 ± 8% at 2-4days to 72 ± 2% at both 2-3 and 10 wk. Histamine causedRL to increase at all ages. Whenpartitioned into Rti and Raw, the percent increase in Rti significantlyexceeded that of Raw at both 2-4 days and 2-3 wk. Incontrast, the percent increase in Raw significantly exceeded that ofRti at 10 wk. Administration of atropine before histamine in pigletsaged 10 wk reduced the response of Rti and Raw to histamine.Histamine-induced responses ofRL were blocked by priorH1-receptor blockade withpyrilamine (2 mg/kg). These results indicate that1) the contribution of Rti and Rawto RL changes during maturationand that 2) contractile responses toexogenous histamine are manifest predominantly in most distal airwaysand lung parenchyma during early postnatal life; with advancingmaturation there is greater contribution of airways to the increase inRL induced by histamine.

  相似文献   
20.
Glutamic acid produced from palm waste hydrolysate by fermentation with Brevibacterium lactofermentum ATCC 13869 is produced with a remarkably high yield compared with that produced from pure glucose as a carbon source. The produce yield is 70 g/L with glucose, wherease, when palm waste hydrolysate is the fermentation medium in the same bioreactor under same conditions, it is 88 g/L. The higher yield may be attributed to the fact that this organism has the ability to convert sugars other than only glucose present in the hydrolysate. Bioreactor conditions most conducive for maximum production are pH 7.5, temperature of 30 degrees rmentation period of 48 h, inoculum size 6%, substrate concentration of 10 g per 100 mL, yeast extract 0.5 g per 100 mL as a suitable N source, and biotin at a concentration of 10 pg/L. Palm waste hydrolysate used in this study was prepared by enzymic saccharification of treated palm press fiber under conditions that yielded a maximum of 30 g/L total reducing sugars. Glutamic acid from fermentation broth was recovered by using a chromatographic column (5cm x 60 cm) packed with a strong ion-exchange resin. The filtered broth containing glutamic acid and other inorganic ions was fed to the fully charged column. The broth was continuously recycled at a flow rate of 50 mL/min (retention time of 55 min) until glutamic acid was fully adsorbed on the column leaving other ions in the effluent. Recovery was done by eluting with urea and sodium hydroxide for total displacement of glutamic acid from the resin. The eluent containing 88 g/L of glutamic acid was concentrated by evaporation to obtain solid crystals of the product. (c) 1995 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号