首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   397篇
  免费   35篇
  国内免费   1篇
  2023年   2篇
  2021年   4篇
  2020年   17篇
  2019年   40篇
  2018年   29篇
  2017年   5篇
  2016年   8篇
  2015年   7篇
  2014年   11篇
  2013年   23篇
  2012年   9篇
  2011年   1篇
  2010年   10篇
  2009年   5篇
  2008年   14篇
  2007年   16篇
  2006年   18篇
  2005年   11篇
  2004年   5篇
  2003年   6篇
  2002年   12篇
  2001年   16篇
  2000年   8篇
  1999年   13篇
  1998年   18篇
  1997年   9篇
  1996年   20篇
  1995年   15篇
  1994年   7篇
  1993年   12篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   12篇
  1988年   4篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1980年   5篇
  1979年   2篇
  1978年   2篇
  1976年   1篇
  1974年   1篇
排序方式: 共有433条查询结果,搜索用时 203 毫秒
51.
Manganese is known to cause central nervous system injury leading to parkinsonism and to contribute to the pathogenesis of hepatic encephalopathy. Although mechanisms of manganese neurotoxicity are not completely understood, chronic exposure of various cell types to manganese has shown oxidative stress and mitochondrial energy failure, factors that are often implicated in the induction of the mitochondrial permeability transition (MPT). In this study, we examined whether exposure of cultured neurons and astrocytes to manganese induces the MPT. Cells were treated with manganese acetate (10-100 microM), and the MPT was assessed by changes in the mitochondrial membrane potential and in mitochondrial calcein fluorescence. In astrocytes, manganese caused a dissipation of the mitochondrial membrane potential and decreased the mitochondrial calcein fluorescence in a concentration- and time-dependent manner. These changes were completely blocked by pretreatment with cyclosporin A, consistent with induction of the MPT. On the other hand, similarly treated cultured cortical neurons had a delayed or reduced MPT as compared with astrocytes. The manganese-induced MPT in astrocytes was blocked by pretreatment with antioxidants, suggesting the potential involvement of oxidative stress in this process. Induction of the MPT by manganese and associated mitochondrial dysfunction in astrocytes may represent key mechanisms in manganese neurotoxicity.  相似文献   
52.
E6‐associated protein (E6AP) is a cellular ubiquitin protein ligase that mediates ubiquitylation and degradation of tumor suppressor p53 in conjunction with the high‐risk human papillomavirus E6 protein. We previously reported that E6AP targets annexin A1 protein for ubiquitin‐dependent proteasomal degradation. To gain a better understanding of the physiological function of E6AP, we have been seeking to identify novel substrates of E6AP. Here, we identified peroxiredoxin 1 (Prx1) as a novel E6AP‐binding protein using a tandem affinity purification procedure coupled with mass spectrometry. Prx1 is a 25‐kDa member of the Prx family, a ubiquitous family of antioxidant peroxidases that regulate many cellular processes through intracellular oxidative signal transduction pathways. Immunoprecipitation analysis showed that E6AP binds Prx1 in vivo. Pull‐down experiments showed that E6AP binds Prx1 in vitro. Ectopic expression of E6AP enhanced the degradation of Prx1 in vivo. In vivo and in vitro ubiquitylation assays revealed that E6AP promoted polyubiquitylation of Prx1. RNAi‐mediated downregulation of endogenous E6AP increased the level of endogenous Prx1 protein. Taken together, our data suggest that E6AP mediates the ubiquitin‐dependent proteasomal degradation of Prx1. Our findings raise a possibility that E6AP may play a role in regulating Prx1‐dependent intracellular oxidative signal transduction pathways. J. Cell. Biochem. 111: 676–685, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
53.
54.
Brain edema and the subsequent increase in intracranial pressure are the major neurological complications in fulminant hepatic failure (FHF). Brain edema in FHF is predominantly "cytotoxic" due principally to astrocyte swelling. It is generally believed that ammonia plays a key role in this process, although the mechanism by which ammonia brings about such swelling is yet to be defined. It has been postulated that glutamine accumulation in astrocytes subsequent to ammonia detoxification results in increased osmotic forces leading to cell swelling. While the hypothesis is plausible and has gained support, it has never been critically tested. In this study, we examined whether a correlation exists between cellular glutamine levels and the degree of cell swelling in cultured astrocytes exposed to ammonia. Cultured astrocytes derived from rat brain cortices were exposed to ammonia (5 mM) for different time periods and cell swelling was measured. Cultures treated with ammonia for 1-3 days showed a progressive increase in astrocyte cell volume (59-127%). Parallel treatment of astrocyte cultures with ammonia showed a significant increase in cellular glutamine content (60-80%) only at 1-4 h, a time when swelling was absent, while glutamine levels were normal at 1-3 days, a time when peak cell swelling was observed. Thus no direct correlation between cell swelling and glutamine levels was detected. Additionally, acute increase in intracellular levels of glutamine by treatment with the glutaminase inhibitor 6-diazo-5-oxo-L-norleucine (DON) after ammonia exposure also did not result in swelling. On the contrary, DON treatment significantly blocked (66%) ammonia-induced astrocyte swelling at a later time point (24 h), suggesting that some process resulting from glutamine metabolism is responsible for astrocyte swelling. Additionally, ammonia-induced free radical production and induction of the mitochondrial permeability transition (MPT) were significantly blocked by treatment with DON, suggesting a key role of glutamine in the ammonia-induced free radical generation and the MPT. In summary, our findings indicate a lack of direct correlation between the extent of cell swelling and cellular levels of glutamine. While glutamine may not be acting as an osmolyte, we propose that glutamine-mediated oxidative stress and/or the MPT may be responsible for the astrocyte swelling by ammonia.  相似文献   
55.
Isoniazid (INH) still remains a first-line drug both for treatment and prophylaxis of tuberculosis, but various organs toxicity frequently develops in patients receiving this drug. We aimed to investigate possible toxic effects of INH on rat red blood cells (RBCs), and to elucidate whether Caffeic acid phenethyl ester (CAPE) prevents a possible toxic effect of INH. Experimental groups were designed as follows: control group, INH group, INH + CAPE group. Compared with the control, the INH caused a significant increase in superoxide dismutase (SOD) activity and malondialdehyde (MDA) levels, and a decrease in glutathione peroxidase (GSH-Px) and catalase (CAT), which are recently used to monitor the development and extent of damage due to oxidative stresses. CAPE administration to INH group ameliorated above changes due to INH.  相似文献   
56.
Doxorubicin (DOX) is a broad-spectrum anthracycline antibiotic that has cardiotoxicity as a major side effect. One mechanism of this toxicity is believed to involve the reactive oxygen radical species (ROS); these agents likely account for the pathophysiology of DOX-induced cardiomyopathy. Aminoguanidine (AG) is an effective antioxidant and free radical scavenger which has long been known to protect against ROS formation. We investigated the effects of AG on DOX-induced changes in thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content. The rats were divided into four groups:1) Control; 2) DOX group; injected intraperitoneally (i.p.) with DOX 20 mg/kg in a single dose 3) AG-treated group; injected i.p. in single dose of 20 mg/kg DOX plus 100 mg/kg AG 1 h before the DOX for 3 days, 4) AG group; injected i.p. with AG 100 mg/kg for 3 days. DOX administration to control rats increased TBARS and decreased GSH levels. AG administration before DOX injection caused significant decrease in TBARS and increase in GSH levels in the heart tissue when compared with DOX only. Morphological changes, including severe myocardial fibrosis and inflammatory cell infiltration were clearly observed in the DOX-treated heart. AG reversed the DOX-induced heart damage. Therefore AG could protect the heart tissue against free radical injury. The application of AG during cancer chemotherapy may attenuate tissue damage and improve the therapeutic index of DOX.  相似文献   
57.
58.

Background  

A prospective observational study was done to describe nonbacterial pulmonary complications in hospitalized patients with human immunodeficiency virus (HIV) infection.  相似文献   
59.
Endotoxin shock is a major cause of death in patients with septicemia. Endotoxin induces nitric oxide (NO) production and causes tissue damage. In addition, the release of oxygen free radicals has also been observed in endotoxin shock and was found to be responsible for the occurrence of multiple organ failure. The purpose of the present study was to evaluate suitable indicators for early and late stages of endotoxin shock. The experiments were designed to induce endotoxin shock in conscious rats by means of anEscherichia coli lipopolysaccharide (LPS) injection. Arterial pressure (AP) and heart rate (HR) were continuously monitored for 72 h after LPS administration. The maximal decrease in AP and increase in HR and nitrate/nitrite level occurred at 9–12 h following LPS administration. The white blood cell (WBC) count had decreased at 3 h. Hydroxyl radical (methyl guanidine, MG) decreased rapidly after LPS administration. Plasma levels of blood urea nitrogen (BUN), creatinine (Cr), lactic dehydrogenase (LDH), creatine phosphokinase (CPK), and glutamic oxaloacetic transaminase increased before the rise of amylase. Our results suggest that changes in AP, HR, WBC, free radicals, and chemical substances (BUN, Cr) can possibly serve as approximate indicators for the early stage of endotoxin shock. Severe multiple organ damage may be caused by amylase release in the late stage of endotoxin shock.  相似文献   
60.
Lysosome-associated membrane protein (LAMP)-1, one of the major protein components of the lysosomal membrane, is upregulated in the human glioblastoma cell lines, U-373 MG and LN-Z308, which undergo cisplatin-induced apoptosis. These human brain tumor cell lines demonstrated apoptosis in response to cisplatin/nifedipine treatment. Both cell lines demonstrated an apoptotic response by more than one criterion. Apoptosis was demonstrated by DNA fragmentation techniques such as DNA laddering, ApopTag in situ labeling, and an ELISA-based method of detecting liberated oligosomes. These cells also had characteristic morphologic changes and upregulation of bax consistent with apoptosis. LAMP-1 expression at the protein and mRNA level was examined and found to increase with cisplatin/nifedipine treatment. LAMP-1 expression was examined using indirect immunofluorescent staining, Northern blot analysis and Western blot analysis. The finding of an augmentation of LAMP-1 in these cells induced to die is enigmatic. These findings raise the possibility of LAMP-1 involvement in the apoptotic process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号