首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   2篇
  1978年   1篇
排序方式: 共有38条查询结果,搜索用时 15 毫秒
21.
22.
23.
24.
25.
An RNA folding method capable of identifying pseudoknots and base triples   总被引:7,自引:1,他引:6  
MOTIVATION: Recently, we described a Maximum Weighted Matching (MWM) method for RNA structure prediction. The MWM method is capable of detecting pseudoknots and other tertiary base-pairing interactions in a computationally efficient manner (Cary and Stormo, Proceedings of the Third International Conference on Intelligent Systems for Molecular Biology, pp. 75-80, 1995). Here we report on the results of our efforts to improve the MWM method's predictive accuracy, and show how the method can be extended to detect base interactions formerly inaccessible to automated RNA modeling techniques. RESULTS: Improved performance in MWM structure prediction was achieved in two ways. First, new ways of calculating base pair likelihoods have been developed. These allow experimental data and combined statistical and thermodynamic information to be used by the program. Second, accuracy was improved by developing techniques for filtering out spurious base pairs predicted by the MWM program. We also demonstrate here a means by which the MWM folding method may be used to detect the presence of base triples in RNAs. AVAILABILITY: http://www.cshl.org/mzhanglab/tabaska/j axpage. html CONTACT: tabaska@cshl.org   相似文献   
26.
The 18S and 5.8S rDNA genes and the internal transcribed spacers ITS-1 and ITS-2 of ciliates living in the hindgut of frogs, millipedes, and cockroaches were analyzed in order to study the evolution of intestinal protists. All ciliates studied here belong to the genus Nycrotherus. Phylogenetic analysis revealed that these ciliates from a monophyletic group that includes the distantly related anaerobic free-living heterotrichous ciliates Metopus palaeformis and Metopus contortus. The intestinal ciliates from the different vertebrate and invertebrate hosts are clearly divergent at the level of their rDNA repeats. This argues for the antiquity of the associations and a predominantly vertical transmission. This mode of transmission seems to be controlled primarily by the behavior of the host. The different degrees of divergence between ciliates living in different strains of one and the same cockroach species most likely reflect the different geographical origins of the hosts. In addition, host switches must have occurred during the evolution of cockroaches, since identical ciliates were found only in distantly related hosts. These phenomena prevent the reconstruction of potential cospeciation events.   相似文献   
27.
Robson, G. D., Prebble, E., Rickers, A., Hosking, S., Denning, D. W., Trinci, A. P. J., and Robertson, W. 1996. Polarized growth of fungal hyphae is defined by an alkaline pH gradient. Fungal Genetics and Biology 20, 289-298. Polarized cell growth is exhibited by a diverse range of eukaryotic and prokaryotic cells. The events which are responsible for this growth are poorly understood. However, the existence of ion gradients may play an important role in establishing and driving cell polarity. Using a pH-sensitive, ratiometric fluorescent dye to monitor intracellular pH in growing fungal hyphae, we report a gradient at the extending hyphal tip that is up to 1.4 pH units more alkaline than more distal regions. Both the magnitude and the length of the pH gradient were strongly correlated with the rate of hyphal extension and eradication of the gradient-arrested growth. These results suggest that alkaline pH gradients may be integral to hyphal extension in fungi.  相似文献   
28.
Mitochondria are the energy‐generating hubs of the cell. In spite of considerable advances, our understanding of the factors that regulate the molecular circuits that govern mitochondrial function remains incomplete. Using a genome‐wide functional screen, we identify the poorly characterized protein Zinc finger CCCH‐type containing 10 (Zc3h10) as regulator of mitochondrial physiology. We show that Zc3h10 is upregulated during physiological mitochondriogenesis as it occurs during the differentiation of myoblasts into myotubes. Zc3h10 overexpression boosts mitochondrial function and promotes myoblast differentiation, while the depletion of Zc3h10 results in impaired myoblast differentiation, mitochondrial dysfunction, reduced expression of electron transport chain (ETC) subunits, and blunted TCA cycle flux. Notably, we have identified a loss‐of‐function mutation of Zc3h10 in humans (Tyr105 to Cys105) that is associated with increased body mass index, fat mass, fasting glucose, and triglycerides. Isolated peripheral blood mononuclear cells from individuals homozygotic for Cys105 display reduced oxygen consumption rate, diminished expression of some ETC subunits, and decreased levels of some TCA cycle metabolites, which all together derive in mitochondrial dysfunction. Taken together, our study identifies Zc3h10 as a novel mitochondrial regulator.  相似文献   
29.
Hyphae of Saprolegnia ferax growing under normal or low-turgor conditions were exposed to 0.1-10 &mgr;g/ml latrunculin B, an actin inhibitor. In the first 10 s of addition, hyphae with normal turgor levels accelerated while those with low turgor decelerated, consistent with the suggestion that actin restrains or protrudes tips under these respective turgor conditions. Both sets of hyphae then decelerated and eventually ceased extension within 60 s. These changes were reflected in rhodamine-phalloidin staining patterns, which showed that actin caps were disrupted progressively under both conditions in a time-dependent manner. After 60 s, normal-turgored hyphae started to swell rapidly while low-turgored hyphae showed little or no swelling. Swelling was characteristically subapical, which is best explained by tip growth models which incorporate actin-mediated exocytosis.  相似文献   
30.
Inducible degrader of the low density lipoprotein receptor (IDOL), is an E3 ubiquitin ligase that negatively modulates low density lipoprotein receptor (LDL-R) expression. Genome-wide association studies (GWAS) indicated that genetic variants in IDOL gene contributes to variation in LDL-C plasma levels and the detailed analysis of a specific locus resulted in the identification of the functional common single nucleotide polymorphism (SNP) rs9370867 (c.G1025A, p.N342S) associates with increased LDL-R degradation and increased LDL-C levels. These findings, however, were not confirmed in two other independent cohorts and no data about the impact of this variant on atherosclerosis progression and cardiovascular risk are available. Aim of this study was to investigate the association between a functional variant in IDOL and atherosclerosis progression in an Italian general population. 1384 subjects enrolled in the PLIC study (Progression of Lesions in the Intima of Carotid) were genotyped by Q-PCR allelic discrimination and the association with anthropometric parameters, plasma lipids and the carotid intima media thickness (cIMT) and the impact on cardiovascular disease (CVD) incidence were investigated. The N342S variant was not associated with changes of the plasma lipid profile among GG, AG or AA carriers, including total cholesterol (249±21, 249±19 and 248±21 mg/dl respectively), LDL-C (158±25, 161±22 and 160±23 mg/dL), cIMT (0.74±0.14, 0.75±0.17 and 0.77±0.15 mm) and CVD incidence. In agreement, the expression of LDLR and the uptake of LDL was similar in macrophages derived from GG and AA carriers. Taken together our findings indicate that the N342S variant does not impact plasma lipid profile and is not associated with atherosclerosis progression and CVD in the general population, suggesting that other variants in the IDOL gene might be functionally linked with cholesterol metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号