首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2900篇
  免费   319篇
  国内免费   2篇
  2023年   10篇
  2022年   19篇
  2021年   79篇
  2020年   33篇
  2019年   70篇
  2018年   76篇
  2017年   59篇
  2016年   97篇
  2015年   149篇
  2014年   156篇
  2013年   175篇
  2012年   229篇
  2011年   195篇
  2010年   170篇
  2009年   129篇
  2008年   168篇
  2007年   173篇
  2006年   145篇
  2005年   122篇
  2004年   118篇
  2003年   91篇
  2002年   115篇
  2001年   40篇
  2000年   48篇
  1999年   34篇
  1998年   41篇
  1997年   22篇
  1996年   23篇
  1995年   23篇
  1994年   21篇
  1993年   22篇
  1992年   30篇
  1991年   27篇
  1990年   25篇
  1989年   24篇
  1988年   17篇
  1987年   15篇
  1986年   19篇
  1985年   17篇
  1984年   17篇
  1983年   10篇
  1980年   10篇
  1977年   17篇
  1976年   10篇
  1974年   8篇
  1973年   9篇
  1972年   10篇
  1971年   9篇
  1969年   9篇
  1967年   9篇
排序方式: 共有3221条查询结果,搜索用时 203 毫秒
71.
Bivariate mixed effects models are often used to jointly infer upon covariance matrices for both random effects ( u ) and residuals ( e ) between two different phenotypes in order to investigate the architecture of their relationship. However, these (co)variances themselves may additionally depend upon covariates as well as additional sets of exchangeable random effects that facilitate borrowing of strength across a large number of clusters. We propose a hierarchical Bayesian extension of the classical bivariate mixed effects model by embedding additional levels of mixed effects modeling of reparameterizations of u‐ level and e ‐level (co)variances between two traits. These parameters are based upon a recently popularized square‐root‐free Cholesky decomposition and are readily interpretable, each conveniently facilitating a generalized linear model characterization. Using Markov Chain Monte Carlo methods, we validate our model based on a simulation study and apply it to a joint analysis of milk yield and calving interval phenotypes in Michigan dairy cows. This analysis indicates that the e ‐level relationship between the two traits is highly heterogeneous across herds and depends upon systematic herd management factors.  相似文献   
72.
Even though significant breakthroughs with over 18% power conversion efficiencies (PCEs) in polymer:non‐fullerene acceptor (NFA) bulk heterojunction organic solar cells (OSCs) have been achieved, not many studies have focused on acquiring a comprehensive understanding of the underlying mechanisms governing these systems. This is because it can be challenging to delineate device photophysics in polymer:NFA blends comprehensively, and even more complicated to trace the origins of the differences in device photophysics to the subtle differences in energetics and morphology. Here, a systematic study of a series of polymer:NFA blends is conducted to unify and correlate the cumulative effects of i) voltage losses, ii) charge generation efficiencies, iii) non‐geminate recombination and extraction dynamics, and iv) nuanced morphological differences with device performances. Most importantly, a deconvolution of the major loss processes in polymer:NFA blends and their connections to the complex BHJ morphology and energetics are established. An extension to advanced morphological techniques, such as solid‐state NMR (for atomic level insights on the local ordering and donor:acceptor π? π interactions) and resonant soft X‐ray scattering (for donor and acceptor interfacial area and domain spacings), provide detailed insights on how efficient charge generation, transport, and extraction processes can outweigh increased voltage losses to yield high PCEs.  相似文献   
73.
74.
Aerobiologia - The purpose of this study is to contribute to the knowledge about fungal spores in the atmosphere of the city of Salamanca (Middle West Spain), through the comparative study of...  相似文献   
75.
76.
77.
The sugar kelp Saccharina latissima experiences a wide range of environmental conditions along its geographical and vertical distribution range. Temperature and salinity are two critical drivers influencing growth, photosynthesis and biochemical composition. Moreover, interactive effects might modify the results described for single effects. In shallow water coastal systems, exposure to rising temperatures and low salinity are expected as consequence of global warming, increased precipitation and coastal run‐off. To understand the acclimation mechanisms of S. latissima to changes in temperature and salinity and their interactions, we performed a mechanistic laboratory experiment in which juvenile sporophytes from Brittany, France were exposed to a combination of three temperatures (0, 8 and 15°C) and two salinity levels (20 and 30 psu (practical salinity units)). After a temperature acclimation of 7 days, sporophytes were exposed to low salinity (20 psu) for a period of 11 days. Growth, and maximal quantum yield of photosystem II (Fv/Fm), pigments, mannitol content and C:N ratio were measured over time. We report for the first time in S. latissima a fivefold increase in the osmolyte mannitol in response to low temperature (0°C) compared to 8 and 15°C that may have ecological and economic implications. Low temperatures significantly affected all parameters, mostly in a negative way. Chlorophyll a, the accessory pigment pool, growth and Fv/Fm were significantly lower at 0°C, while the de‐epoxidation state of the xanthophyll cycle was increased at both 0 and 8°C compared to 15°C. Mannitol content and growth decreased with decreased salinity; in contrast, pigment content and Fv/Fm were to a large extent irresponsive to salinity. In comparison to S. latissima originating from an Arctic population, despite some reported differences, this study reveals a remarkably similar impact of temperature and salinity variation, reflecting the large degree of adaptability in this species.  相似文献   
78.
79.
80.

Purpose

To investigate the antibacterial effect and the effect on the material properties of a novel delivery system with Irgasan as active agent and methacrylated polymerizable Irgasan when added to experimental dental resin composites.

Materials and Methods

A delivery system based on novel polymeric hollow beads, loaded with Irgasan and methacrylated polymerizable Irgasan as active agents were used to manufacture three commonly formulated experimental resin composites. The non-modified resin was used as standard (ST). Material A contained the delivery system providing 4 % (m/m) Irgasan, material B contained 4 % (m/m) methacrylated Irgasan and material C 8 % (m/m) methacrylated Irgasan. Flexural strength (FS), flexural modulus (FM), water sorption (WS), solubility (SL), surface roughness Ra, polymerization shrinkage, contact angle Θ, total surface free energy γS and its apolar γS LW, polar γS AB, Lewis acid γS +and base γS - term as well as bacterial viability were determined. Significance was p < 0.05.

Results

The materials A to C were not unacceptably influenced by the modifications and achieved the minimum values for FS, WS and SL as requested by EN ISO 4049 and did not differ from ST what was also found for Ra. Only A had lower FM than ST. Θ of A and C was higher and γS AB of A and B was lower than of ST. Materials A to C had higher γS + than ST. The antibacterial effect of materials A to C was significantly increased when compared with ST meaning that significantly less vital cells were found.

Conclusion

Dental resin composites with small quantities of a novel antibacterially doped delivery system or with an antibacterial monomer provided acceptable physical properties and good antibacterial effectiveness. The sorption material being part of the delivery system can be used as a vehicle for any other active agent.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号