首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   332篇
  免费   26篇
  2023年   2篇
  2022年   4篇
  2021年   21篇
  2020年   7篇
  2019年   8篇
  2018年   11篇
  2017年   9篇
  2016年   11篇
  2015年   21篇
  2014年   25篇
  2013年   42篇
  2012年   34篇
  2011年   22篇
  2010年   9篇
  2009年   18篇
  2008年   15篇
  2007年   11篇
  2006年   12篇
  2005年   12篇
  2004年   18篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   4篇
  1996年   3篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1987年   1篇
  1986年   2篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1964年   1篇
排序方式: 共有358条查询结果,搜索用时 15 毫秒
51.
Two new species of freshwater ascomycetes belonging to the genus Lindgomyces (Pleosporales, Dothideomycetes) are described and illustrated from submerged wood in North Carolina, USA. Lindgomyces carolinensis is characterized by immersed to erumpent ascomata, fissitunicate broadly cylindrical to clavate asci, and fusiform ascospores with acute ends surrounded by a large, fusiform gelatinous sheath. Lindgomyces cigarospora morphologically differs from L. carolinensis in that its ascospores are fusiform to cylindrical with rounded ends, without a large fusiform gelatinous sheath. These two new species nest in the family Lindgomycetaceae based on analyses of combined SSU and LSU rDNA sequence data. Phylogenetic analyses using ITS sequence data support the establishment of the new taxa as separate species within Lindgomyces. In addition to the new species, we report new ITS sequence data for L. cinctosporus and L. griseosporus from France, and L. ingoldianus from North Carolina, USA. We report a video exhibiting fissitunicate ascus dehiscence in L. carolinensis showing ascospore discharge and unraveling of the gelatinous sheath in real time. Chemical analysis of the organic extracts of L. carolinensis and L. cigarospora resulted in two known cyclodepsipeptides, Sch 378161 and Sch 217048. The in situ spatial mapping of these secondary metabolites on fungal cultures indicates the presence of both compounds on the surface of mycelia, as well as being exuded into the surrounding agar.  相似文献   
52.
Fundus autofluorescence (AF) imaging by confocal scanning laser ophthalmoscopy has been widely used by ophthalmologists in the diagnosis/monitoring of various retinal disorders. It is believed that fundus AF is derived from lipofuscin in retinal pigment epithelial (RPE) cells; however, direct clinicopathological correlation has not been possible in humans. We examined fundus AF by confocal scanning laser ophthalmoscopy and confocal microscopy in normal C57BL/6 mice of different ages. Increasingly strong AF signals were observed with age in the neuroretina and subretinal/RPE layer by confocal scanning laser ophthalmoscopy. Unlike fundus AF detected in normal human subjects, mouse fundus AF appeared as discrete foci distributed throughout the retina. Most of the AF signals in the neuroretina were distributed around retinal vessels. Confocal microscopy of retinal and choroid/RPE flat mounts demonstrated that most of the AF signals were derived from Iba-1+ perivascular and subretinal microglia. An age-dependent accumulation of Iba-1+ microglia at the subretinal space was observed. Lipofuscin granules were detected in large numbers in subretinal microglia by electron microscopy. The number of AF+ microglia and the amount of AF granules/cell increased with age. AF granules/lipofuscin were also observed in RPE cells in mice older than 12 months, but the number of AF+ RPE cells was very low (1.48 mm(-2) and 5.02 mm(-2) for 12 and 24 months, respectively) compared to the number of AF+ microglial cells (20.63 mm(-2) and 76.36 mm(-2) for 6 and 24 months, respectively). The fluorescence emission fingerprints of AF granules in subretinal microglia were the same as those in RPE cells. Our observation suggests that perivascular and subretinal microglia are the main cells producing lipofuscin in normal aged mouse retina and are responsible for in vivo fundus AF. Microglia may play an important role in retinal aging and age-related retinal diseases.  相似文献   
53.
The rodent uterus is a widely studied target tissue for sexual steroid hormone action. The aim of the present study was to assess the molecular mechanism that participates in the initiation of cell proliferation of the rat uterine epithelial cells during the estrus (E)–metestrus (M) transition. Cell proliferation, ERα, c-fos, cyclin D1 and D3, cdk4, and cdk6 proteins were assessed in these animals by immunohistochemistry. Estradiol (E2) and progesterone (P4) plasma levels were assessed by RIA. The results indicate that the glandular epithelium starts to proliferate at 21:00 h on estrus day, and initiates at least 3 h before the luminal epithelium does. Fos expression was markedly increased during the afternoon of estrus day, and its increase was in parallel to ERα expression. Interestingly, both, cyclin D1 and D3 were abundantly expressed in the luminal and glandular epithelia, and nuclear immunolabelling of cyclin D1 and D3 precedes BrdU incorporation in the cell. cdk4 and cdk6 were localized in the nuclei in both epithelia throughout the studied time course. In addition, cdk4 was more abundant throughout estrus and metestrus days than cdk6. The overall results indicate that ERα, Fos and cyclins D1 and D3, cdk4 and cdk6 are expressed in both glandular and luminal epithelia of the rat uterus during the E–M transition. In conclusion, there is a good correlation between sequential expression of these proteins and cell cycle progression in the rat uterine epithelial cells during the estrous cycle. However, the differences observed in the cellular localization, time course of expression and the cellular types that express both cyclins between physiological and pharmacological conditions, demonstrated different mechanisms of regulation and should be due to the complex hormonal milieu during the estrous cycle.  相似文献   
54.
55.
A portable unilateral nuclear magnetic resonance (NMR) instrument was used to detect in field conditions the water status of leaves of herbaceous crops (Zea mays, Phaseolus vulgaris), mesophyllous trees (Populus nigra), and natural Mediterranean vegetation characterized by water-spending shrubs (Cistus incanus) and water-saving sclerophyllous trees (Quercus ilex). A good relationship was observed between NMR signal, leaf relative water content, and leaf transpiration in herbaceous leaves undergoing fast dehydration or slowly developing a drought stress. A relationship was also observed between NMR signal and water potential of Populus leaves during the development of a water stress and when leaves recovered from the stress. In the natural vegetation, the relationship between NMR signal and water status was found in Cistus, the species characterized by high transpiration rates, when measured during a drought stress period and after a rainfall. In the case of the sclerophyllous Quercus, the NMR signal, the relative water content, and the transpiration rate did not change at different leaf water status, possibly because a large amount of water is compartmentalized in cellular structures and macromolecules. The good association between NMR signal and relative water content was lost in leaves exposed for 24 h to dehydration or to an osmotic stress caused by polyethylene glycol feeding. At this time, the transverse relaxation time became longer than in leaves maintained under optimal water conditions, and two indicators of membrane damage, the ion leakage and the emission of products of membrane lipoxygenation [(Z)-3-hexenal, (Z)-3-hexenol, and (E)-2-hexenol], increased. These results taken all together give information on the physiological state of a leaf under a developing stress and show the usefulness of the NMR instrumentation for screening vegetation health and fitness in natural and cultivated conditions. It is concluded that the portable unilateral NMR instrument may be usefully employed in field conditions to monitor nondestructively the water status of plants and to assist agricultural practices, such as irrigation scheduling, to minimize stomatal closure and the consequent limitation to plant production.  相似文献   
56.
New substituted 1-aryl-5-(1H-pyrrol-1-yl)-1H-pyrazole-3-carboxamides were synthesized by replacing the 2,4-dichlorobenzyl and cyclohexyl moieties at the 3-carboxamide nitrogen of the previously reported CB1 receptor antagonists/inverse agonists 4 and 5. Several ligands showed potent affinity for the hCB1 receptor, with Ki concentrations comparable to the reference compounds 1, 4 and 5, and exhibited CB1 selectivity comparable to 1 and 2. Docking experiments and molecular dynamics (MD) simulations explained the potent hCB1 binding affinity of compounds 31 and 37. According to our previous studies, 31 and 37 formed a H-bond with K3.28(192), which accounted for the high affinity for the receptor inactive state and the inverse agonist activity. The finding of inhibition of food intake following their acute administration to rats, supported the concept that the CB1 selective compounds 4 and 52 act as antagonists/inverse agonists.  相似文献   
57.
The resistance of malaria parasites to current anti-malarial drugs is an issue of major concern globally. Recently we identified a Plasmodium falciparum cell membrane aspartyl protease, which binds to erythrocyte band 3, and is involved in merozoite invasion. Here we report the complete primary structure of P. falciparum signal peptide peptidase (PfSPP), and demonstrate that it is essential for parasite invasion and growth in human erythrocytes. Gene silencing suggests that PfSPP may be essential for parasite survival in human erythrocytes. Remarkably, mammalian signal peptide peptidase inhibitors (Z-LL)2-ketone and L-685,458 effectively inhibited malaria parasite invasion as well as growth in human erythrocytes. In contrast, DAPT, an inhibitor of a related γ-secretase/presenilin-1, was ineffective. Thus, SPP inhibitors specific for PfSPP may function as potent anti-malarial drugs against the blood stage malaria.  相似文献   
58.

Background

Human T cells play an important role in pathogen clearance, but their aberrant activation is also linked to numerous diseases. T cells are activated by the concurrent induction of the T cell receptor (TCR) and one or more costimulatory receptors. The characterization of signaling pathways induced by TCR and/or costimulatory receptor activation is critical, since these pathways are excellent targets for novel therapies for human disease. Although studies using human T cell lines have provided substantial insight into these signaling pathways, no comprehensive, direct comparison of these cell lines to activated peripheral blood T cells (APBTs) has been performed to validate their usefulness as a model of primary T cells.

Methodology/Principal Findings

We used quantitative biochemical techniques to compare the activation of two widely used human T cell lines, Jurkat E6.1 and HuT78 T cells, to APBTs. We found that HuT78 cells were similar to APBTs in proximal TCR-mediated signaling events. In contrast, Jurkat E6.1 cells had significantly increased site-specific phosphorylation of Pyk2, PLCγ1, Vav1, and Erk1/Erk2 and substantially more Ca2+ flux compared to HuT78 cells and APBTs. In part, these effects appear to be due to an overexpression of Itk in Jurkat E6.1 cells compared to HuT78 cells and APBTs. Both cell lines differ from APBTs in the expression and function of costimulatory receptors and in the range of cytokines and chemokines released upon TCR and costimulatory receptor activation.

Conclusions/Significance

Both Jurkat E6.1 and HuT78 T cells had distinct similarities and differences compared to APBTs. Both cell lines have advantages and disadvantages, which must be taken into account when choosing them as a model T cell line.  相似文献   
59.
The functional characterization of wax biosynthetic enzymes in transgenic plants has opened the possibility of producing tailored wax esters (WEs) in the seeds of a suitable host crop. In this study, in addition to systematically evaluating a panel of WE biosynthetic activities, we have also modulated the acyl‐CoA substrate pool, through the co‐expression of acyl‐ACP thioesterases, to direct the accumulation of medium‐chain fatty acids. Using this combinatorial approach, we determined the additive contribution of both the varied acyl‐CoA pool and biosynthetic enzyme substrate specificity to the accumulation of non‐native WEs in the seeds of transgenic Camelina plants. A total of fourteen constructs were prepared containing selected FAR and WS genes in combination with an acyl‐ACP thioesterase. All enzyme combinations led to the successful production of wax esters, of differing compositions. The impact of acyl‐CoA thioesterase expression on wax ester accumulation varied depending on the substrate specificity of the WS. Hence, co‐expression of acyl‐ACP thioesterases with Marinobacter hydrocarbonoclasticus WS and Marinobacter aquaeolei FAR resulted in the production of WEs with reduced chain lengths, whereas the co‐expression of the same acyl‐ACP thioesterases in combination with Mus musculus WS and M. aquaeolei FAR had little impact on the overall final wax composition. This was despite substantial remodelling of the acyl‐CoA pool, suggesting that these substrates were not efficiently incorporated into WEs. These results indicate that modification of the substrate pool requires careful selection of the WS and FAR activities for the successful high accumulation of these novel wax ester species in Camelina seeds.  相似文献   
60.
The study presented here aimed at identifying a new class of compounds acting against Leishmania parasites, the causative agent of Leishmaniasis. For this purpose, the thioether derivatives of our in-house library have been evaluated in whole-cell screening assays in order to determine their in vitro activity against Leishmania protozoan. Among them, promising results have been achieved with compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine) (IC50?=?29.43?µM), which is able to impair the mechanism of the parasite defence against the reactive oxygen species by inhibiting the trypanothione reductase (TR) with high efficiency (Ki 0.25?±?0.18?µM). The X-ray structure of L. infantum TR in complex with RDS 777 disclosed the mechanism of action of this compound that binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding and avoiding its reduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号