首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   0篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有31条查询结果,搜索用时 343 毫秒
21.
The ligand binding subunit of the D2 dopamine receptor (Mr approximately equal to 94,000) can be visualized by autoradiography following photoaffinity labeling with [125I]N-azidophenethylspiperone and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Following removal of sialic acids with the exoglycosidase, neuraminidase, [125I]N-azidophenethylspiperone photoincorporated into a protein of Mr = 54,000 with the appropriate pharmacological profile for D2 receptors. The desialylated D2 receptor bound dopaminergic agonists with high affinity and was capable of coupling to a functional G-protein as indexed by: 1) pertussis-toxin mediated [32P]ADP ribosylation of proteins of Mr = 42,000 and 39,000, and 2) the conversion of the agonist high affinity form of D2 receptors to one displaying low affinity for agonists in the presence of guanine nucleotides. These data suggest that sialic acid residues do not contribute significantly to the ligand binding characteristics of D2 receptors despite the large change produced in the estimated molecular mass of the binding subunit.  相似文献   
22.
The activity of the dopamine transporter is an important mechanism for the maintenance of normal dopaminergic homeostasis by rapidly removing dopamine from the synaptic cleft. In kidney-derived COS-7, COS-1 and HEK-293 but not in other mammalian cell lines (CHO, Y1, Ltk-), we have characterized a putative functional dopamine transporter displaying a high affinity (Km approximately 250 nM) and a low capacity (approximately 0.1 pmol/10(5) cells/min) for [3H]dopamine uptake. Uptake displayed a pharmacological profile clearly indicative of the neuronal dopamine transporter. Estimated Ki values of numerous substrates and inhibitors for the COS-dopamine transporter and the cloned human neuronal transporter (human dopamine transporter) correlate well with the exception of a few notable compounds, including the endogenous neurotransmitter dopamine, the dopamine transporter inhibitor GBR 12,909 and the dopaminergic agonist apomorphine. As with native neuronal and cloned dopamine transporters, the uptake velocity was sodium-sensitive and reduced by phorbol ester pre-treatment. Two mRNA species of 3.8 and 4.0 kb in COS-7 cells were revealed by Northern blot analysis similar in size to that seen in native neuronal tissue. A reverse-transcribed PCR analysis confirmed the existence of a processed dopamine transporter. However, no immunoreactive proteins of expected dopamine transporter molecular size or [3H]WIN 35,428 binding activity were detected. A partial cDNA of 1.3 kb, isolated from a COS-1 cDNA library and encoding transmembrane domains 1-6, displayed a deduced amino acid sequence homology of approximately 96% to the human dopamine transporter. Taken together, the data suggest the existence of a non-neuronal endogenous high affinity dopamine uptake system sharing strong functional and molecular homology to that of the cloned neuronal dopamine transporter.  相似文献   
23.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   
24.
P Seeman  H B Niznik 《FASEB journal》1990,4(10):2737-2744
The loss of midbrain dopamine in Parkinson's disease is accompanied by a matching loss in the dopamine transporter and a rise in the D1 and D2 receptor densities. This is found in the brain putamen and caudate tissues from unmedicated patients, and may account for the good early clinical response to L-dopa. Long-term L-dopa treatment reverts the receptor densities toward normal levels. Positron emission tomography (PET) data and in vitro data generally concur. In schizophrenia the density of the dopamine transporter as well as that of the D1 dopamine receptor is normal. The D2 receptor density, however, is consistently elevated in postmortem brain putamen and caudate nucleus, even in tissues from neuroleptic-free or drug-naive patients. Three sets of PET and single photon emission computed tomography (SPECT) data support the postmortem findings. Early evidence indicating abnormal D2 structure as well as a reduced link between D1 and D2 warrant a detailed study of the genes for these two receptors in schizophrenia.  相似文献   
25.
Dopamine D2 receptor binding subunits of the porcine anterior pituitary were visualized by autoradiography following photoaffinity labeling with [125I]N-azidophenethylspiperone and sodium dodecyl-sulfate polyacrylamide gel electrophoresis. The ligand binding subunit comprising the pituitary D2 dopamine receptor migrated as two distinct bands of apparent Mr approximately equal to 150,000 and 118,000, substantially higher than neuronal D2 receptor subunits from porcine or canine brain. The glycoprotein nature of pituitary D2 receptor binding subunits was investigated by the use of exo- and endo-glycosidase treatments and peptide mapping experiments. Photoaffinity labeled polypeptides of the anterior pituitary were susceptible to both neuraminidase and alpha-mannosidase digestion as indexed by their increased electrophoretic mobility on sodium dodecyl-sulfate polyacrylamide gels, and suggests the presence of both complex type and terminal mannose carbohydrate residues. Moreover, the additive effects of sequential treatment with these enzymes suggests that both types of carbohydrate chains are present on each receptor peptide. N-linked deglycosylation of pituitary D2 photolabeled receptors with glycopeptidase-F produced a further increase in the mobility of the labeled protein to apparent Mr approximately equal to 44,000, similar to that of deglycosylated D2 binding subunits of porcine and canine brain. Peptide mapping experiments following limited proteolysis with Staphylococcus aureus V8 proteinase and papain demonstrated that deglycosylated D2 dopamine receptors (Mr = 44,000), in different tissues and species, were homologous. Taken together, these data suggest that despite the differences in the overall molecular weight and tissue specific glycosylation pattern of pituitary D2 dopamine receptors, the primary structure of mammalian D2 receptors appears to be conserved.  相似文献   
26.
Abstract: Although members of the multiple vertebrate/mammalian dopamine D1 receptor gene family can be selectively classified on the basis of their molecular/phylogenetic, structural, and tissue distribution profiles, no subtype-specific discriminating agents have yet been identified that can functionally differentiate these receptors. To define distinct pharmacological/functional attributes of multiple D1-like receptors, we analyzed the ligand binding profiles, affinity, and functional activity of 12 novel NNC compounds at mammalian/vertebrate D1/D1A and D5/D1B, as well as vertebrate D1C/D1D, dopamine receptors transiently expressed in COS-7 cells. Of all the compounds tested, only NNC 01-0012 displayed preferential selectivity for vertebrate D1C receptors, inhibiting [3H]SCH-23390 binding with an estimated affinity (∼0.6 n M ) 20-fold higher than either mammalian/vertebrate D1/D1A or D5/D1B receptors or the D1D receptor. Functionally, NNC 01-0012 is a potent antagonist at D1C receptors, inhibiting to basal levels dopamine (10 µ M )-stimulated adenylyl cyclase activity. In contrast, NNC 01-0012 (10 µ M ) exhibits weak antagonist activity at D1A receptors, inhibiting only 60% of maximal cyclic AMP production by dopamine, while acting as a partial agonist at vertebrate D1B and D1D receptors, stimulating adenylyl cyclase activity by ∼33% relative to the full agonist dopamine (10 µ M ), an effect that was blocked by the selective D1 receptor antagonist NNC 22-0010. These data clearly suggest that the benzazepine NNC 01-0012, despite lacking the N -methyl residue in the R3 position, is a selective and potent D1C receptor antagonist. Moreover, the differential signal transduction properties exhibited by NNC 01-0012 at these receptor subtypes provide further evidence, at least in vertebrates, for the classification of the D1C receptor as a distinct D1 receptor subtype.  相似文献   
27.
The three main subtypes of dopamine D(1) receptor (D(1A), D(1B) and D(1C)) subtypes found in most vertebrate groups were generated by two major steps of gene duplications, early in evolution. To identify the functional characteristics contributing to conservation of these paralogous D(1) receptors in vertebrates, the pharmacological and functional properties of fish (Anguilla anguilla), amphibian (Xenopus laevis) and human receptors were systematically analysed in transfected cells. The ligand-binding parameters appeared essentially similar for orthologous receptors, but differed significantly among the subtypes. The D(1A) receptors from the three species displayed low intrinsic activity and a fast rate of agonist-induced desensitization. All the orthologous D(1B) receptors exhibited a similar desensitization time-course, but with smaller amplitude of decrease than D(1A) receptors, in agreement with their higher basal activity. In contrast, D(1C) receptors, which do not exist in mammals, have low intrinsic activity and exhibit only weak, but rapid, agonist-induced desensitization, without any changes upon longer treatment with agonist. Thus, each of the three D(1) receptor subtypes are characterized by activation and desensitization properties, in a sequence-specific manner, which has been probably acquired early after gene duplications, and constrained their conservation during vertebrate evolution. These properties have been instrumental to adapt dopamine system to the physiology of the numerous neuronal networks and functions they control in the large and complex brains of vertebrates.  相似文献   
28.
29.
In order to investigate the possibility that there may be two conformationally distinct dopamine D1 binding sites, the effect of lysine-modifying agents on striatal dopamine D1 receptors was investigated. Treatment with the distilbene derivative, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, (DIDS), resulted in an irreversible D1 receptor inactivation that was associated with a 70% loss of binding sites. The remaining DIDS-insensitive sites displayed both a decreased affinity (approximately 5 fold) for the D1 antagonist SCH-23390 and an enhanced affinity of dopaminergic agonists (approximately 10 fold) for the agonist high-affinity form of the receptor. Pretreatment with Gpp(NH)p, a non-hydrolysable guanine nucleotide, prevented the formation of the agonist high-affinity form, indicating that these sites are G-protein-linked. Prior occupancy of D1 receptors with dopaminergic agonists and antagonists afforded no protection against DIDS inactivation, suggesting that a site outside the ligand binding subunit of the D1 receptor was modified. Taken together, these data suggest that [3H]SCH-23390 labels two conformationally distinct populations of dopamine D1 receptors.  相似文献   
30.
We have characterized the dopamine D2 receptor photoaffinity probe, [3H]azido-N-methylspiperone ([3H]AMS). In the absence of light, [3H]AMS bound reversibly and with high affinity (Kd 70 pM) to sites in canine striatal membranes and was competitively inhibited by dopaminergic agonists and antagonists with an appropriate D2 receptor specificity. Upon photolysis, [3H]AMS covalently incorporated into a peptide of Mr 92,000 as assessed by fluorography following SDS-polyacrylamide gel electrophoresis. Labelling of this peptide was specifically and stereoselectively blocked by D2 antagonists and agonists. Minor specifically labelled peptides of Mr 70,000-55,000 were observed under some conditions and were the result of proteolytic degradation of the peptide at Mr 92,000.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号