首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21833篇
  免费   3027篇
  国内免费   404篇
  2023年   84篇
  2022年   128篇
  2021年   390篇
  2020年   289篇
  2019年   338篇
  2018年   437篇
  2017年   403篇
  2016年   576篇
  2015年   707篇
  2014年   828篇
  2013年   961篇
  2012年   1063篇
  2011年   1154篇
  2010年   677篇
  2009年   644篇
  2008年   804篇
  2007年   756篇
  2006年   718篇
  2005年   619篇
  2004年   566篇
  2003年   543篇
  2002年   510篇
  2001年   2311篇
  2000年   2133篇
  1999年   1505篇
  1998年   443篇
  1997年   467篇
  1996年   394篇
  1995年   361篇
  1994年   279篇
  1993年   228篇
  1992年   726篇
  1991年   596篇
  1990年   509篇
  1989年   396篇
  1988年   313篇
  1987年   242篇
  1986年   182篇
  1985年   140篇
  1984年   87篇
  1983年   68篇
  1982年   45篇
  1981年   43篇
  1980年   27篇
  1979年   33篇
  1978年   29篇
  1976年   30篇
  1974年   25篇
  1973年   32篇
  1970年   24篇
排序方式: 共有10000条查询结果,搜索用时 250 毫秒
991.
Foot-and-mouth disease virus (FMDV), the causative agent of foot-and-mouth disease, is an Aphthovirus within the Picornaviridae family. During infection with FMDV, several host cell membrane rearrangements occur to form sites of viral replication. FMDV protein 2C is part of the replication complex and thought to have multiple roles during virus replication. To better understand the role of 2C in the process of virus replication, we have been using a yeast two-hybrid approach to identify host proteins that interact with 2C. We recently reported that cellular Beclin1 is a natural ligand of 2C and that it is involved in the autophagy pathway, which was shown to be important for FMDV replication. Here, we report that cellular vimentin is also a specific host binding partner for 2C. The 2C-vimentin interaction was further confirmed by coimmunoprecipitation and immunofluorescence staining to occur in FMDV-infected cells. It was shown that upon infection a vimentin structure forms around 2C and that this structure is later resolved or disappears. Interestingly, overexpression of vimentin had no effect on virus replication; however, overexpression of a truncated dominant-negative form of vimentin resulted in a significant decrease in viral yield. Acrylamide, which causes disruption of vimentin filaments, also inhibited viral yield. Alanine scanning mutagenesis was used to map the specific amino acid residues in 2C critical for vimentin binding. Using reverse genetics, we identified 2C residues that are necessary for virus growth, suggesting that the interaction between FMDV 2C and cellular vimentin is essential for virus replication.  相似文献   
992.
With the completion of large scale genomic sequencing, a great number of non-conding RNAs (ncRNAs) have been discovered and capture the attention of the biological sciences community. All known ncRNAs may be divided into two groups, namely: i—small ncRNAs, which comprise microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs) and short interfering RNAs (siRNAs), and ii—several thousands of long ncRNAs (lncRNAs). NcRNAs were shown to be involved in eukaryotic growth and development, cell proliferation and differentiation, apoptosis, epigenetic modifications, and also the complex control and pathogenesis of various diseases. In this paper, knowledge on the ncRNAs, which functioning is associated with human diseases, has been summarized.  相似文献   
993.
Salinity is a major abiotic stress which affects crop plants around the world, resulting in substantial loss of yield and millions of dollars of lost revenue. High levels of Na+ in shoot tissue have many adverse effects and, crucially, yield in cereals is commonly inversely proportional to the extent of shoot Na+ accumulation. We therefore need to identify genes, resistant plant cultivars and cellular processes that are involved in salinity tolerance, with the goal of introducing these factors into commercially available crops. Through the use of an Arabidopsis thaliana mapping population, we have identified a highly significant quantitative trait locus (QTL) linked to Na+ exclusion. Fine mapping of this QTL identified a protein kinase (AtCIPK16), related to AtSOS2, that was significantly up‐regulated under salt stress. Greater Na+ exclusion was associated with significantly higher root expression of AtCIPK16, which is due to differences in the gene's promoter. Constitutive overexpression of the gene in Arabidopsis leads to plants with significant reduction in shoot Na+ and greater salinity tolerance. amiRNA knock‐downs of AtCIPK16 in Arabidopsis show a negative correlation between the expression levels of the gene and the amount of shoot Na+. Transgenic barley lines overexpressing AtCIPK16 show increased salinity tolerance.  相似文献   
994.
The possible mechanism of adriamycin (ADR) and/or selenium (Se) deficiency-induced cardiac dysfunction, and cardioprotective effects of Se against ADR-induced cardiac toxicity were investigated in this study. Cardiac function was evaluated by plasma brain natriuretic peptide level and echocardiographic and hemodynamic parameters. Cardiac glutathione peroxidase (GPx) activity was assessed spectrophotometrically. Expression of ATP-sensitive potassium channels (KATP) subunits—SUR2A and Kir6.2—were examined by real-time PCR and Western blotting. The results showed that cardiac function and cardiac GPx activity decreased remarkably after administration of ADR or Se deficiency; more dramatic impairment of cardiac function and cardiac GPx activity were observed after co-administration of ADR and Se deficiency. Mechanically, it is novel for us to find down-regulation of KATP subunits gene expression in cardiac tissue after administration of ADR or Se deficiency, and more significant inhibition of cardiac KATP gene expression was identified after co-administration of ADR and Se deficiency. Furthermore, cardiac toxicity of ADR was found alleviated by Se supplementation, accompanied by restoring of cardiac GPx activity and cardiac KATP gene expression. These results indicate that decreased expression of cardiac KATP is involved in adriamycin and/or Se deficiency-induced cardiac dysfunction; Se deficiency exacerbates adriamycin-induced cardiac dysfunction by future inhibition of KATP expression; Se supplementation seems to protect against adriamycin-induced cardiac dysfunction via restoring KATP expression, showing potential clinical application in cancer chemotherapy.  相似文献   
995.
The aim of the present study was to explore the role of selenoprotein P (SePP) in the etiology of the endemic sudden cardiac death in Yunnan, China. The levels of SePP of 124 subjects and glutathione peroxidase (GPx) of 119 subjects were measured. The subjects were from the old and new endemic areas and non-endemic areas. The levels of SePP and GPx of the subjects of the old endemic area were significantly higher than those of the subjects of the new endemic area and the non-endemic areas, respectively. The Pearson’s correlation among SePP, GPx, and the number of the incident cases of the disease were statistically significant. These correlations show that there is an inverse relationship among the number of patients and the levels of SePP (r? = ?? 0.9800, P ?= ?0.0200) and GPx (r? = ?? 0.961, P ?= ?0.009). The results show that selenium deficiency might play an important role in the incidence of the disease.  相似文献   
996.
Changes in the critical swimming speed (Ucrit, cm s?1) with ontogeny of 2·5–12·5 month‐old juvenile anadromous Chinese sturgeon Acipenser sinesis were measured in a modified Blazka‐type swimming tunnel. The absolute Ucrit increased with length, mass and age; the relative Ucrit (body lengths, s?1), however, decreased. Juvenile A. sinesis did not display a parr–smolt transformation at the length or age threshold to tolerate full‐strength seawater.  相似文献   
997.
Transgenic Cry1Ac, Cry2Aa and Cry1Ca (Bt toxins) rice lines are well developed to manage lepidopteron pests in China. The impact of transgenic Bt rice on the non-target Brown Planthopper (BPH) has become an essential part of environmental risk assessment, however, scanty evidence is found addressing on developmental and molecular responses of BPH to the ingestion of Bt protein from transgenic rice. The focus of the current study is to examine the developmental characteristics and the expression profiles of gene in relation to digestion, detoxification and immune responses were examined. Our study strongly revealed that the tested Bt rice strains have no unfavorable effect on fecundity, survival and growth of BPH. Furthermore, each of the tested genes did not exhibit distinct expression pattern responding to non Bt parental cultivar, thus, it could be concluded that Bt rice have no detrimental effects on the physiological processes of digestion, detoxification and immune responses of BPH.  相似文献   
998.
Activation and inactivation of voltage-gated sodium channels (Navs) are well studied, yet the molecular mechanisms governing channel gating in the membrane remain unknown. We present two conformations of a Nav from Caldalkalibacillus thermarum reconstituted into lipid bilayers in one crystal at 9 Å resolution based on electron crystallography. Despite a voltage sensor arrangement identical with that in the activated form, we observed two distinct pore domain structures: a prominent form with a relatively open inner gate and a closed inner-gate conformation similar to the first prokaryotic Nav structure. Structural differences, together with mutational and electrophysiological analyses, indicated that widening of the inner gate was dependent on interactions among the S4–S5 linker, the N-terminal part of S5 and its adjoining part in S6, and on interhelical repulsion by a negatively charged C-terminal region subsequent to S6. Our findings suggest that these specific interactions result in two conformational structures.  相似文献   
999.
Cholesterol homeostasis is crucial for cellular function and organismal health. The key regulator for the cholesterol biosynthesis is sterol-regulatory element binding protein (SREBP)-2. The biochemical process and physiological function of SREBP-2 have been well characterized; however, it is not clear how this gene is epigenetically regulated. Here we have identified sirtuin (Sirt)6 as a critical factor for Srebp2 gene regulation. Hepatic deficiency of Sirt6 in mice leads to elevated cholesterol levels. On the mechanistic level, Sirt6 is recruited by forkhead box O (FoxO)3 to the Srebp2 gene promoter where Sirt6 deacetylates histone H3 at lysines 9 and 56, thereby promoting a repressive chromatin state. Remarkably, Sirt6 or FoxO3 overexpression improves hypercholesterolemia in diet-induced or genetically obese mice. In summary, our data suggest an important role of hepatic Sirt6 and FoxO3 in the regulation of cholesterol homeostasis.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号