首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   10篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   7篇
  2012年   8篇
  2011年   4篇
  2010年   5篇
  2009年   8篇
  2008年   9篇
  2007年   13篇
  2006年   13篇
  2005年   6篇
  2004年   8篇
  2003年   6篇
  2002年   3篇
  1998年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1983年   1篇
  1981年   3篇
  1974年   1篇
  1973年   2篇
  1971年   1篇
  1968年   3篇
  1967年   1篇
  1965年   2篇
排序方式: 共有141条查询结果,搜索用时 265 毫秒
21.
The nucleocapsid protein (NC) of HIV-1 is 55 amino acids in length and possesses two CCHC-type zinc fingers. Finger one (N-terminal) contributes significantly more to helix destabilizing activity than finger two (C-terminal). Five amino acids differ between the two zinc fingers. To determine at the amino acid level the reason for the apparent distinction between the fingers, each different residue in finger one was incrementally replaced by the one at the corresponding location in finger two. Mutants were analyzed in annealing assays with unstructured and structured substrates. Three groupings emerged: (1) those similar to wild-type levels (N17K, A25M), (2) those with diminished activity (I24Q, N27D), and (3) mutant F16W, which had substantially greater helix destabilizing activity than that of the wild type. Unlike I24Q and the other mutants, N27D was defective in DNA binding. Only I24Q and N27D showed reduced strand transfer in in vitro assays. Double and triple mutants F16W/I24Q, F16W/N27D, and F16W/I24Q/N27D all showed defects in DNA binding, strand transfer, and helix destabilization, suggesting that the I24Q and N27D mutations have a dominant negative effect and abolish the positive influence of F16W. Results show that amino acid differences at positions 24 and 27 contribute significantly to finger one's helix destabilizing activity.  相似文献   
22.
In the present study, we evaluated the effect of inhibition of renin activity (aliskiren) on the progression of renal lesions in two different mouse models (Vpr and Tg26) of human immunodeficiency virus (HIV)-associated nephropathy (HIVAN). In protocol A, Vpr mice were fed either water (C-VprA) or doxycycline [Doxy (D-VprA)] in their drinking water for 6 wk. In protocols B and C, Vpr mice received either normal saline (C-VprB/C), Doxy + normal saline (D-VprB/C), or Doxy + aliskiren (AD-VprB/C) for 6 wk (protocol B) or 12 wk (protocol C). In protocols D and E, Vpr mice were fed Doxy for 6 wk followed by kidney biopsy. Subsequently, half of the mice were administered either normal saline (D-VprD/E) or aliskiren (AD-VprD/E) for 4 wk (protocol D) or 8 (protocol E) wk. All D-VprA mice showed renal lesions in the form of focal segmental glomerular sclerosis and dilatation of tubules. In protocols B and C, aliskiren diminished both progression of renal lesions and proteinuria. In protocol C, aliskiren also diminished (P < 0.01) the rise in blood urea. In all groups, Doxy-treated mice displayed increased serum ANG I levels (the product of plasma renin activity); on the other hand, all aliskiren-treated mice displayed diminished serum ANG I levels. Renal tissues of D-VprC displayed increased ANG II content; however, aliskiren attenuated renal tissue ANG II production in AD-VprC. In protocol D, AD-VprD showed a 24.2% increase in the number of sclerosed glomeruli compared with 139.2% increase in sclerosed glomeruli in D-VprD (P < 0.01) from their baseline. The attenuating effect of aliskiren on the progression of renal lesions continued in AD-VprE. Aliskiren also diminished blood pressure, proteinuria, and progression of renal lesions in Tg26 mice. These findings indicate that inhibition of renin activity has a potential to slow down the progression of HIVAN.  相似文献   
23.
Opiates have been reported to induce T cell loss. We evaluated the role of vitamin D receptor (VDR) and the activation of the renin-angiotensin system (RAS) in morphine-induced T cell loss. Morphine-treated human T cells displayed downregulation of VDR and the activation of the RAS. On the other hand, a VDR agonist (EB1089) enhanced T cell VDR expression both under basal and morphine-stimulated states. Since T cells with silenced VDR displayed the activation of the RAS, whereas activation of the VDR was associated with downregulation of the RAS, it appears that morphine-induced T cell RAS activation was dependent on the VDR status. Morphine enhanced reactive oxygen species (ROS) generation in a dose-dependent manner. Naltrexone (an opiate receptor antagonist) inhibited morphine-induced ROS generation and thus, suggested the role of opiate receptors in T cell ROS generation. The activation of VDR as well as blockade of ANG II (by losartan, an AT(1) receptor blocker) also inhibited morphine-induced T cell ROS generation. Morphine not only induced double-strand breaks (DSBs) in T cells but also attenuated DNA repair response, whereas activation of VDR not only inhibited morphine-induced DSBs but also enhanced DNA repair. Morphine promoted T cell apoptosis; however, this effect of morphine was inhibited by blockade of opiate receptors, activation of the VDR, and blockade of the RAS. These findings indicate that morphine-induced T cell apoptosis is mediated through ROS generation in response to morphine-induced downregulation of VDR and associated activation of the RAS.  相似文献   
24.
The therapeutic potential of stem cells is limited by the non-uniformity of their phenotypic state. Thus it would be advantageous to noninvasively monitor stem cell status. Driven by this challenge, we employed multidimensional multiphoton microscopy to quantify changes in endogenous fluorescence occurring with pluripotent stem cell differentiation. We found that global and cellular-scale fluorescence lifetime of human embryonic stem cells (hESC) and murine embryonic stem cells (mESC) consistently decreased with differentiation. Less consistent were trends in endogenous fluorescence intensity with differentiation, suggesting intensity is more readily impacted by nuances of species and scale of analysis. What emerges is a practical and accessible approach to evaluate, and ultimately enrich, living stem cell populations based on changes in metabolism that could be exploited for both research and clinical applications.  相似文献   
25.
Xenorhabdus nematophila secretes insecticidal proteins to kill its larval prey. We have isolated an approximately 58-kDa GroEL homolog, secreted in the culture medium through outer membrane vesicles. The protein was orally insecticidal to the major crop pest Helicoverpa armigera with an LC50 of approximately 3.6 microg/g diet. For optimal insecticidal activity all three domains of the protein, apical, intermediate, and equatorial, were necessary. The apical domain alone was able to bind to the larval gut membranes and manifest low level insecticidal activity. At equimolar concentrations, the apical domain contained approximately one-third and the apical-intermediate domain approximately one-half bioactivity of that of the full-length protein. Interaction of the protein with the larval gut membrane was specifically inhibited by N-acetylglucosamine and chito-oligosaccharides. Treatment of the larval gut membranes with chitinase abolished protein binding. Based on the three-dimensional structural model, mutational analysis demonstrated that surface-exposed residues Thr-347 and Ser-356 in the apical domain were crucial for both binding to the gut epithelium and insecticidal activity. Double mutant T347A,S356A was 80% less toxic (p < 0.001) than the wild type protein. The GroEL homolog showed alpha-chitin binding activity with Kd approximately 0.64 microm and Bmax approximately 4.68 micromol/g chitin. The variation in chitin binding activity of the mutant proteins was in good agreement with membrane binding characteristics and insecticidal activity. The less toxic double mutant XnGroEL showed an approximately 8-fold increase of Kd in chitin binding assay. Our results demonstrate that X. nematophila secretes an insecticidal GroEL protein with chitin binding activity.  相似文献   
26.
27.
28.
Oleaginous microalgae are considered as important feedstocks for production of biodiesel. Under nutrient stress conditions, microalgae have the ability to accumulate higher amount of lipids, which can be transesterified for the production of biodiesel. In the present investigation, four different phosphate application strategies were examined in five green microalgae (Tetradesmus obliquus, Tetradesmus lagerheimii, Chlorella vulgaris, Chlorella minutissima, and Chlamydomonas sp.) to achieve higher lipid productivity. Effects of those strategies such as phosphate-sufficient (Control), phosphate-starved approach (PSA), biphasic phosphate-starved approach (BPSA), and sequential phosphate addition (SPA) were studied under batch culture mode. The BPSA emerging as the best in terms of lipid productivity consisted of two biomass harvesting phases, which would lead to an increase in the overall cost of biodiesel production. On the other hand, the SPA with a 1/200th dose of N 11 medium, i.e., 0.4 mg L?1 of phosphate application in 3-day intervals, also resulted into higher lipid productivity which was equal to BPSA. Fatty acid composition of the biodiesel obtained from the microalgae was analyzed and the fuel characteristics were also evaluated. A profound (~14-fold) reduction in phosphorus requirements under the SPA mode with higher lipid productivity ensured qualitative biodiesel production and a lesser amount of phosphorus release, thus making the process eco-friendly.  相似文献   
29.
Xenorhabdus nematophila produces type 1 fimbriae on the surface of Phase I cells. Fimbriae mediate recognition and adhesion of the bacteria to its target cell. To investigate the role of fimbriae in the biology of X. nematophila , we have produced a fimbrial mutant strain by insertional inactivation of the mrx A gene, encoding the structural subunit of type 1 fimbriae. Phenotypic characterization of the mutant revealed loss of fimbriae on the cell surface. Cell surface characteristics like dye absorption, biofilm formation, red blood cell agglutination remained unaltered. The mrx A mutant was defective in swarming on soft agar, although swimming motility was not affected. Flagellar expression was suppressed in the mrxA strain under swarming conditions, but not swimming conditions. Agglutination and cytotoxicity of the mutant to larval haemocytes was also reduced. When the mutant cells were injected in the haemocoel of the fourth instar larvae of Helicoverpa armigera , an increase in the LT50 of 9–12 h was observed relative to the wild-type strain. The nematode growth was slow on the lawn of the fimbrial mutant. The mrxA negative strain was unable to colonize the nematode gut efficiently. This study demonstrates importance of type 1 fimbriae in establishment of bacteria-nematode symbiosis, a key to successful pest management program.  相似文献   
30.
Biodiesel from microalgae seems to be the only renewable biofuel that has the potential to completely replace the petroleum-derived transport fuels. Therefore, improving lipid content of microalgal strains could be a cost-effective second generation feedstock for biodiesel production. Lipid accumulation in Scenedesmus obliquus was studied under various culture conditions. The most significant increase in lipid reached 43% of dry cell weight (dcw), which was recorded under N-deficiency (against 12.7% under control condition). Under P-deficiency and thiosulphate supplementation the lipid content also increased up to 30% (dcw). Application of response surface methodology in combination with central composite rotary design (CCRD) resulted in a lipid yield of 61.3% (against 58.3% obtained experimentally) at 0.04, 0.03, and 1.0 g l−1 of nitrate, phosphate, and sodium thiosulphate, respectively for time culture of 8 days. Scenedesmus cells pre-grown in glucose (1.5%)-supplemented N 11 medium when subjected to the above optimized condition, the lipid accumulation was boosted up to 2.16 g l−1, the value ~40-fold higher with respect to the control condition. The presence of palmitate and oleate as the major constituents makes S. obliquus biomass a suitable feedstock for biodiesel production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号