首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   322篇
  免费   10篇
  2023年   3篇
  2022年   2篇
  2021年   8篇
  2020年   6篇
  2019年   7篇
  2018年   7篇
  2017年   3篇
  2016年   9篇
  2015年   18篇
  2014年   19篇
  2013年   28篇
  2012年   39篇
  2011年   27篇
  2010年   13篇
  2009年   10篇
  2008年   23篇
  2007年   12篇
  2006年   14篇
  2005年   18篇
  2004年   11篇
  2003年   6篇
  2002年   9篇
  2001年   5篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   4篇
  1982年   1篇
  1981年   2篇
  1980年   3篇
  1978年   1篇
  1977年   3篇
排序方式: 共有332条查询结果,搜索用时 403 毫秒
31.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   
32.
Trichoshield, a talc formulation consisting of spores of Trichoderma harzianum, Trichoderma lignorum, Gliocladium virens and Bacillus subtilis was tested, following different application methods, for its ability to promote growth of pearl millet plants and to induce resistance to downy mildew of pearl millet. Under laboratory conditions, trichoshield seed treatment enhanced seed germination and seedling vigor of pearl millet significantly over the control; under greenhouse conditions vegetative growth parameters like height, fresh and dry weight, leaf area and number of tillers were significantly enhanced over the control: Trichoshield formulation offered greater protection against downy mildew in comparison with individual strains of T. harzianum, T. lignorum, G. virensand B. subtilis. Among the methods of application, foliar spray was found to be a more efficient delivery method than seed treatment or slurry treatment. Combinations of foliar spray with seed treatment and slurry treatment produced the same effect as foliar spray alone. Under field conditions, trichoshield treatment enhanced reproductive parameters like number of earheads, length and girth of earheads, 1000 seed weight and yield significantly over the control. Days required for 50% flowering was reduced by 4 days compared to the control. Yield enhancement of 28% over the control was highly significant. Trichoshield treatment offered protection ranging from 52 to 71% under field conditions, depending on the application method. However, the chemical fungicide metalaxyl Apron provided the highest protection against downy mildew, both under greenhouse and field conditions.  相似文献   
33.
The toxin-coregulated pilus (TCP) of Vibrio cholerae and the soluble TcpF protein that is secreted via the TCP biogenesis apparatus are essential for intestinal colonization. The TCP biogenesis apparatus is composed of at least nine proteins but is largely uncharacterized. TcpC is an outer membrane lipoprotein required for TCP biogenesis that is a member of the secretin protein superfamily. In the present study, analysis of TcpC in a series of strains deficient in each of the TCP biogenesis proteins revealed that TcpC was absent specifically in a tcpQ mutant. TcpQ is a predicted periplasmic protein required for TCP biogenesis. Fractionation studies revealed that the protein is not localized to the periplasm but is associated predominantly with the outer membrane fraction. An analysis of the amount of TcpQ present in the series of tcp mutants demonstrated the inverse of the TcpC result (absence of TcpQ in a tcpC deletion strain). Complementation of the tcpQ deletion restored TcpC levels and TCP formation, and similarly, complementation of tcpC restored TcpQ. Metal affinity pull-down experiments performed using His-tagged TcpC or TcpQ demonstrated a direct interaction between TcpC and TcpQ. In the presence of TcpQ, TcpC was found to form a high-molecular-weight complex that is stable in 2% sodium dodecyl sulfate and at temperatures below 65°C, a characteristic of secretin complexes. Fractionation studies in which TcpC was overexpressed in the absence of TcpQ showed that TcpQ is also required for proper localization of TcpC to the outer membrane.  相似文献   
34.
The extracellular matrix (ECM) or cell wall is a dynamic system and serves as the first line mediator in cell signaling to perceive and transmit extra- and intercellular signals in many pathways. Although ECM is a conserved compartment ubiquitously present throughout evolution, a compositional variation does exist among different organisms. ECM proteins account for 10% of the ECM mass, however, comprise several hundreds of different molecules with diverse functions. To understand the function of ECM proteins, we have developed the cell wall proteome of a crop legume, chickpea (Cicer arietinum). This comprehensive overview of the proteome would provide a basis for future comparative proteomic efforts for this important crop. Proteomic analyses revealed new ECM proteins of unknown functions vis-à-vis the presence of many known cell wall proteins. In addition, we report here evidence for the presence of unexpected proteins with known biochemical activities, which have never been associated with ECM.  相似文献   
35.
36.
MOTIVATION: Effective algorithms for finding relatively weak motifs are an important practical necessity while scanning long DNA sequences for regulatory elements. The success of such an algorithm hinges on the ability of its scoring function combined with a significance analysis test to discern real motifs from random noise. RESULTS: In the first half of the paper we show that the paradigm of relying on entropy scores and their E-values can lead to undesirable results when searching for weak motifs and we offer alternate approaches to analyzing the significance of motifs. In the second half of the paper we reintroduce a scoring function and present a motif-finder that optimizes it that are more effective in finding relatively weak motifs than other tools. AVAILABILITY: The GibbsILR motif finder is available at http://www.cs.cornell.edu/~keich.  相似文献   
37.
We have developed near-isogenic introgression lines (NIILs) of an elite indica rice cultivar (IR64) with the genes for β-carotene biosynthesis from dihaploid (DH) derivatives of golden japonica rice (cv. T309). A careful analysis of the DH lines indicated the integration of the genes of interest [phytoene synthase ( psy ) and phytoene desaturase ( crtI )] and the selectable marker gene (hygromycin phosphotransferase, hph ) in two unlinked loci. During subsequent crossing, progenies could be obtained carrying only the locus with psy and crtI , which was segregated independently from the locus containing the hph gene during meiotic segregation. The NIILs (BC2F2) showed maximum similarity with the recurrent parent cultivar IR64. Further, progenies of two NIILs were devoid of any fragments beyond the left or right border, including the chloramphenicol acetyltransferase ( cat ) antibiotic resistance gene of the transformation vector. Spectrophotometric readings showed the accumulation of up to 1.06 µg total carotenoids, including β-carotene, in 1 g of the endosperm. The accumulation of β-carotene was also evident from the clearly visible yellow colour of the polished seeds.  相似文献   
38.
Gemcitabine has limited clinical benefits for pancreatic ductal adenocarcinoma (PDAC). The phosphatidylinositol-3-kinase (PI3K)/AKT and mammalian target of rapamycin (mTOR) signaling pathways are frequently dysregulated in PDAC. We investigated the effects of NVP-BEZ235, a novel dual PI3K/mTOR inhibitor, in combination with gemcitabine and endothelial monocyte activating polypeptide II (EMAP) in experimental PDAC. Cell proliferation and protein expression were analyzed by WST-1 assay and Western blotting. Animal survival experiments were performed in murine xenografts. BEZ235 caused a decrease in phospho-AKT and phospho-mTOR expression in PDAC (AsPC-1), endothelial (HUVECs), and fibroblast (WI-38) cells. BEZ235 inhibited in vitro proliferation of all four PDAC cell lines tested. Additive effects on proliferation inhibition were observed in the BEZ235-gemcitabine combination in PDAC cells and in combination of BEZ235 or EMAP with gemcitabine in HUVECs and WI-38 cells. BEZ235, alone or in combination with gemcitabine and EMAP, induced apoptosis in AsPC-1, HUVECs, and WI-38 cells as observed by increased expression of cleaved poly (ADP-ribose) polymerase-1 (PARP-1) and caspase-3 proteins. Compared to controls (median survival: 16 days), animal survival increased after BEZ235 and EMAP therapy alone (both 21 days) and gemcitabine monotherapy (28 days). Further increases in survival occurred in combination therapy groups BEZ235 + gemcitabine (30 days, P = 0.007), BEZ235 + EMAP (27 days, P = 0.02), gemcitabine + EMAP (31 days, P = 0.001), and BEZ235 + gemcitabine + EMAP (33 days, P = 0.004). BEZ235 has experimental PDAC antitumor activity in vitro and in vivo that is further enhanced by combination of gemcitabine and EMAP. These findings demonstrate advantages of combination therapy strategies targeting multiple pathways in pancreatic cancer treatment.  相似文献   
39.
Activating and inhibiting receptors of lymphocytes collect valuable information about their mikròs kósmos. This information is essential to initiate or to turn off complex signaling pathways. Irrespective of these advances, our knowledge on how these intracellular activation cascades are coordinated in a spatiotemporal manner is far from complete. Among multiple explanations, the scaffolding proteins have emerged as a critical piece of this evolutionary tangram. Among many, IQGAP1 is one of the essential scaffolding proteins that coordinate multiple signaling pathways. IQGAP1 possesses multiple protein interaction motifs to achieve its scaffolding functions. Using these domains, IQGAP1 has been shown to regulate a number of essential cellular events. This includes actin polymerization, tubulin multimerization, microtubule organizing center formation, calcium/calmodulin signaling, Pak/Raf/Mek1/2-mediated Erk1/2 activation, formation of maestrosome, E-cadherin, and CD44-mediated signaling and glycogen synthase kinase-3/adenomatous polyposis coli-mediated β-catenin activation. In this review, we summarize the recent developments and exciting new findings of cellular functions of IQGAP1.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号