首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4153篇
  免费   339篇
  国内免费   6篇
  2023年   32篇
  2022年   30篇
  2021年   135篇
  2020年   81篇
  2019年   78篇
  2018年   102篇
  2017年   96篇
  2016年   158篇
  2015年   237篇
  2014年   261篇
  2013年   305篇
  2012年   349篇
  2011年   361篇
  2010年   248篇
  2009年   191篇
  2008年   228篇
  2007年   214篇
  2006年   215篇
  2005年   208篇
  2004年   171篇
  2003年   162篇
  2002年   155篇
  2001年   37篇
  2000年   29篇
  1999年   29篇
  1998年   31篇
  1997年   27篇
  1996年   26篇
  1995年   19篇
  1994年   27篇
  1993年   18篇
  1992年   18篇
  1991年   19篇
  1990年   12篇
  1989年   14篇
  1988年   9篇
  1987年   12篇
  1986年   13篇
  1985年   16篇
  1984年   15篇
  1983年   15篇
  1982年   10篇
  1981年   13篇
  1979年   5篇
  1978年   9篇
  1977年   6篇
  1976年   5篇
  1975年   10篇
  1974年   5篇
  1970年   6篇
排序方式: 共有4498条查询结果,搜索用时 15 毫秒
71.
一氧化氮对豆科植物结瘤及固氮的影响机制   总被引:1,自引:0,他引:1  
豆科植物-根瘤菌共生过程受双方基因复杂且精细的调控, 能够产生特异的根瘤结构并可将大气中的惰性氮气(N2)转化为可被植物直接利用的氨态氮。结瘤与固氮受多种因素影响, 其中, 一氧化氮(NO)作为一种自由基反应性气体信号分子, 可参与调节植物的许多生长发育过程, 如植物的呼吸、光形态建成、种子萌发、组织和器官发育、衰老以及响应各种生物及非生物胁迫。在豆科植物中, NO不仅影响寄主与菌共生关系的建立, 还参与调控根瘤菌对氮气的固定并提高植株氮素营养利用效率。该文主要从豆科植物及共生菌内NO的产生、降解及其对结瘤、共生固氮的影响和对环境胁迫的响应, 阐述了NO调控豆科植物共生体系中根瘤形成和共生固氮过程的作用机制, 展望了NO信号分子在豆科植物共生固氮体系中的研究前景。  相似文献   
72.
Kulakova  Nina V.  Kashin  Sergei A.  Bukin  Yuriy S. 《Limnology》2020,21(1):15-24
Limnology - Green microalgae are of the utmost importance to aquatic ecosystems globally, as they are primary producers and major food sources for many organisms. Microalgae of the genus...  相似文献   
73.
Quantifying sublethal effects of plastics ingestion on marine wildlife is difficult, but key to understanding the ontogeny and population dynamics of affected species. We developed a method that overcomes the difficulties by modelling individual ontogeny under reduced energy intake and expenditure caused by debris ingestion. The predicted ontogeny is combined with a population dynamics model to identify ecological breakpoints: cessation of reproduction or negative population growth. Exemplifying this approach on loggerhead turtles, we find that between 3% and 25% of plastics in digestive contents causes a 2.5–20% reduction in perceived food abundance and total available energy, resulting in a 10–15% lower condition index and 10% to 88% lower total seasonal reproductive output compared to unaffected turtles. The reported plastics ingestion is insufficient to impede sexual maturation, but population declines are possible. The method is readily applicable to other species impacted by debris ingestion.  相似文献   
74.
Fayetteville Green Lake (FGL) is a recognized, extensively studied present‐day model of the stratified Proterozoic ocean. Nonetheless, biomass sedimentation in FGL remains hard to explain: while virtually all sediment pigments belong to photosynthetic sulfur bacteria from a chemocline, the isotopic carbon signature of the bulk organic matter suggests its epilimnetic phytoplankton origin. To explain the epilimnetic origin of sedimented carbon, we studied the dominant Synechococci, isolated from FGL. Here, we present experimental evidence that FGL Synechococci produce copious extracellular polysaccharides (EPS) especially when availability of inorganic carbon (Ci) is high relative to availability of other macronutrients, for example phosphorus. The accumulating EPS become impregnated with calcium, magnesium, and sodium cations and are released to the environment as ballasted cell coverings. Sedimentation of these cell‐free EPS can constitute the bulk of pigment‐free organic material in FGL sediment. Because increased availability of Ci specifically stimulates production of EPS and the accumulated EPS adsorb cations and become ballasted, we propose the universal role of cyanobacterial EPS in biomass sedimentation in the high‐Ci Paleoproterozoic ocean as well as in modern aquatic systems like FGL.  相似文献   
75.
Input–output analysis is one of the central methodological pillars of industrial ecology. However, the literature that discusses different structures of environmental extensions (EEs), that is, the scope of physical flows and their attribution to sectors in the monetary input–output table (MIOT), remains fragmented. This article investigates the conceptual and empirical implications of applying two different but frequently used designs of EEs, using the case of energy accounting, where one represents energy supply while the other energy use in the economy. We derive both extensions from an official energy supply–use dataset and apply them to the same single‐region input–output (SRIO) model of Austria, thereby isolating the effect that stems from the decision for the extension design. We also crosscheck the SRIO results with energy footprints from the global multi‐regional input–output (GMRIO) dataset EXIOBASE. Our results show that the ranking of footprints of final demand categories (e.g., household and export) is sensitive to the extension design and that product‐level results can vary by several orders of magnitude. The GMRIO‐based comparison further reveals that for a few countries the supply‐extension result can be twice the size of the use‐extension footprint (e.g., Australia and Norway). We propose a graph approach to provide a generalized framework to disclosing the design of EEs. We discuss the conceptual differences between the two extension designs by applying analogies to hybrid life‐cycle assessment and conclude that our findings are relevant for monitoring of energy efficiency and emission reduction targets and corporate footprint accounting.  相似文献   
76.
Recent studies have demonstrated that chemerin participates in the regulation of female reproductive function at the level of the ovaries. Due to the lack of data concerning the presence of the chemerin system (chemerin and its receptors: CMKLR1, GPR1, CCRL2) in the ovaries of pigs, one of the most economically important livestock species, the aim of this study was to investigate the expression and localization of chemerin and its receptors in the ovaries of prepubertal and mature gilts. We also aimed to examine the concentrations of chemerin in the follicular fluid of prepubertal and mature animals. In the present study, we have demonstrated the expression patterns of chemerin system components in the porcine follicles of different sizes of prepubertal and mature animals, as well as in corpora lutea of mature gilts during the estrous cycle and early pregnancy. The obtained results suggest that the expression of chemerin system components is influenced by the reproductive stage, cell type, and the hormonal status of gilts (the estrous cycle/pregnancy). We have also presented the localization of the chemerin system components in various ovarian structures, and also showed changes in the concentration of chemerin in the follicular fluid of pigs. The presented findings not only confirm that chemerin is produced locally in the porcine ovary but they also demonstrate that chemerin directly affects ovarian cells, as confirmed by the presence of chemerin receptors in all ovarian structures. Therefore, chemerin appears to be an important intra‐ovarian factor that could regulate ovary function in pigs.  相似文献   
77.
The Northern Territory (NT) of Australia is currently free of the dengue mosquito Aedes (Stegomyia) aegypti (L). However, on 17 February 2004, two Ae. aegypti adults were captured in two routine CO2‐baited encephalitis virus surveillance traps in Tennant Creek, located 990 km south of Darwin in the NT. The detection triggered an immediate survey and control response undertaken by the NT Department of Health and Community Services, followed by a Commonwealth of Australia‐funded Ae. aegypti elimination program. This report details the methods and results of the detection and subsequent elimination activities that were carried out between 2004 and 2006, returning the NT to its dengue vector‐free status. There have been very few successful Ae. aegypti elimination programs in the world. This purposeful mosquito elimination for Australia was officially declared on 5 April 2006.  相似文献   
78.
The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long‐term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3‐PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960–2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha?1 year?1 km?1 for P. abies and 0.93 ± 0.010 Mg C ha?1 year?1 km?1 for F. sylvatica). During warm–dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm‐dry extremes. Importantly, cold–dry extremes had negative impacts on regional forest NPP comparable to warm–dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.  相似文献   
79.
Species distribution models (SDMs) project the outcome of community assembly processes – dispersal, the abiotic environment and biotic interactions – onto geographic space. Recent advances in SDMs account for these processes by simultaneously modeling the species that comprise a community in a multivariate statistical framework or by incorporating residual spatial autocorrelation in SDMs. However, the effects of combining both multivariate and spatially-explicit model structures on the ecological inferences and the predictive abilities of a model are largely unknown. We used data on eastern hemlock Tsuga canadensis and five additional co-occurring overstory tree species in 35 569 forest stands across Michigan, USA to evaluate how the choice of model structure, including spatial and non-spatial forms of univariate and multivariate models, affects ecological inference about the processes that shape community composition as well as model predictive ability. Incorporating residual spatial autocorrelation via spatial random effects did not improve out-of-sample prediction for the six tree species, although in-sample model fit was higher in the spatial models. Spatial models attributed less variation in occurrence probability to environmental covariates than the non-spatial models for all six tree species, and estimated higher (more positive) residual co-occurrence values for most species pairs. The non-spatial multivariate model was better suited for evaluating habitat suitability and hypotheses about the processes that shape community composition. Environmental correlations and residual correlations among species pairs were positively related, perhaps indicating that residual correlations were due to shared responses to unmeasured environmental covariates. This work highlights the importance of choosing a non-spatial model formulation to address research questions about the species–environment relationship or residual co-occurrence patterns, and a spatial model formulation when within-sample prediction accuracy is the main goal.  相似文献   
80.
Closely related species often differ in traits that influence reproductive success, suggesting that divergent selection on such traits contribute to the maintenance of species boundaries. Gymnadenia conopsea ss. and Gymnadenia densiflora are two closely related, perennial orchid species that differ in (a) floral traits important for pollination, including flowering phenology, floral display, and spur length, and (b) dominant pollinators. If plant–pollinator interactions contribute to the maintenance of trait differences between these two taxa, we expect current divergent selection on flowering phenology and floral morphology between the two species. We quantified phenotypic selection via female fitness in one year on flowering start, three floral display traits (plant height, number of flowers, and corolla size) and spur length, in six populations of G. conopsea s.s. and in four populations of G. densiflora. There was indication of divergent selection on flowering start in the expected direction, with selection for earlier flowering in two populations of the early‐flowering G. conopsea s.s. and for later flowering in one population of the late‐flowering G. densiflora. No divergent selection on floral morphology was detected, and there was no significant stabilizing selection on any trait in the two species. The results suggest ongoing adaptive differentiation of flowering phenology, strengthening this premating reproductive barrier between the two species. Synthesis: This study is among the first to test whether divergent selection on floral traits contribute to the maintenance of species differences between closely related plants. Phenological isolation confers a substantial potential for reproductive isolation, and divergent selection on flowering time can thus greatly influence reproductive isolation and adaptive differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号