首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   5篇
  2022年   3篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   3篇
  2015年   2篇
  2014年   7篇
  2013年   3篇
  2012年   6篇
  2011年   9篇
  2010年   3篇
  2009年   4篇
  2008年   7篇
  2007年   6篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   3篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
排序方式: 共有82条查询结果,搜索用时 296 毫秒
11.
Ricin is a toxin isolated from castor beans that has potential as a weapon of bioterrorism. This glycoprotein consists of an A-chain (RTA) that damages the ribosome and inhibits protein synthesis and a B-chain that plays a role in cellular uptake. Ricin activates the c-Jun N-terminal kinase (JNK) and p38 signaling pathways; however, a role for these pathways in ricin-induced cell death has not been investigated. Our goals were to determine if RTA alone could activate apoptosis and if the JNK and p38 pathways were required for this response. Comparable caspase activation was observed with both ricin and RTA treatment in the immortalized, nontransformed epithelial cell line, MAC-T. Ribosome depurination and inhibition of protein synthesis were induced in 2–4 h with 1 μg/ml RTA and within 4–6 h with 0.1 μg/ml RTA. Apoptosis was not observed until 4 h of treatment with either RTA concentration. RTA activated JNK and p38 in a time- and concentration-dependent manner that preceded increases in apoptosis. Inhibition of the JNK pathway reduced RTA-induced caspase activation and poly(ADP-ribose) polymerase cleavage. In contrast, inhibition of the p38 pathway had little effect on RTA-induced caspase 3/7 activation. These studies are the first to demonstrate a role for the JNK signaling pathway in ricin-induced cell death. In addition, the MAC-T cell line is shown to be a sensitive in vitro model system for future studies using RTA mutants to determine relationships between RTA-induced depurination, ribotoxic stress, and apoptosis in normal epithelial cells.  相似文献   
12.
Endothelial cell (EC) cultures of different, selected vascular beds and/or organs were screened for receptor-mediated transport of proteins with a semipermeable filter assay. In SVEC4-10 cells, a mouse lymphoid endothelial cell line, orosomucoid, albumin, insulin and LDL were transcytosed from the apical (luminal) to basal (abluminal) side by a receptor-mediated pathway. Specific LDL transcytosis involved transport of intact LDL. A pathway of degradation of LDL and basal release involved vesicles in transport to lysosomes and amino acid merocrine secretion. This newly described transcellular passage of LDL via lysosomes, as well as the standard pathway, were reduced to 70% by PEG(50)-cholesterol (PEG-Chol). Combined results of temperature-dependence analysis and PEG(50)-cholesterol sensitivity show that two pathways contribute to general LDL transcellular passage. We suggest a mechanism of domain hopping by protein membrane diffusion of receptors as the pathway for intact LDL delivery. Based on theoretical considerations we propose that active transport by protein membrane diffusion can be facilitated by an organizational structure of lipid microdomains and polar cellular organization.  相似文献   
13.
14.
Binding of the human immunodeficiency virus (HIV) envelope gp120 glycoprotein to CD4 and CCR5 receptors on the plasma membrane initiates the viral entry process. Although plasma membrane cholesterol plays an important role in HIV entry, its modulating effect on the viral entry process is unclear. Using fluorescence resonance energy transfer imaging, we have provided evidence here that CD4 and CCR5 localize in different microenvironments on the surface of resting cells. Binding of the third variable region V3-containing gp120 core to CD4 and CCR5 induced association between these receptors, which could be directly monitored by fluorescence resonance energy transfer on the plasma membrane of live cells. Depletion of cholesterol from the plasma membrane abolished the gp120 core-induced associations between CD4 and CCR5, and reloading cholesterol restored the associations in live cells. Our studies suggest that, during the first step of the HIV entry process, gp120 binding alters the microenvironments of unbound CD4 and CCR5, with plasma membrane cholesterol required for the formation of the HIV entry complex.  相似文献   
15.
Pokeweed antiviral protein (PAP) is a type I ribosomal inactivating protein (RIP). PAP binds to and depurinates the sarcin/ricin loop (SRL) of ribosomal RNA resulting in the cessation of protein synthesis. PAP has also been shown to bind to mRNA cap analogs and depurinate mRNA downstream of the cap structure. The biological role of cap binding and its possible role in PAP activity are not known. Here we show the first direct quantitative evidence for PAP binding to the cap analog m(7)GTP. We report a binding affinity of 43.3+/-0.1 nM at 25 degrees C as determined by fluorescence quenching experiments. This is similar to the values reported for wheat cap-binding proteins eIFiso4E and eIFiso4F. van't Hoff analysis of m(7)GTP-PAP equilibrium reveals a binding reaction that is enthalpy driven and entropy favored with TDeltaS degrees contributing 15% to the overall value of DeltaG degrees . This is in contrast to the wheat cap-binding proteins which are enthalpically driven in the DeltaG degrees for binding. Competition experiments indicate that ATP and GTP compete for the cap-binding site on PAP with slightly different affinities. Fluorescence studies of PAP-eIFiso4G binding reveal a protein-protein interaction with a K(d) of 108.4+/-0.3 nM. eIFiso4G was shown to enhance the interaction of PAP with m(7)GTP cap analog by 2.4-fold. These results suggest the involvement of PAP-translation initiation factor complexes in RNA selection and depurination.  相似文献   
16.
We compared two haploid genotypes of one Ciona savignyi individual and identified codons at which these genotypes differ by two nonsynonymous substitutions. Using the C. intestinalis genome as an outgroup, we showed that both substitutions tend to occur in the same genotype. Only in 53 (34.4%) of 154 codons, one substitution occurred in each of the two genotypes, although 77 (50%) of such codons are to be expected if substitutions were independent. We considered two feasible evolutionary causes for the observed pattern: substitutions driven by positive selection and compensatory substitutions, as well as several potential biases. However, none of these explanations is fully compelling, and data on multiple genotypes of C. savignyi would help to elucidate the causes of this pattern.  相似文献   
17.
The clinical management of immunocompromised patients depends on the rapid identification of infectious agents such as fungal pathogens. The procedure described here for accomplishing this uses a sensitive polymerase chain reaction method, previously reported, combined with restriction-enzyme digestion to distinguish between Candida and Aspergillus species and to classify Aspergillus strains.  相似文献   
18.
An antiviral protein (25 kD) isolated from leaves of Celosia cristata (CCP 25) was tested for depurination study on ribosomal RNA from yeast. Ribosomal RNA yielded 360 nucleotide base fragment after treatment with CCP 25 indicating that CCP 25 was a ribosome inactivating protein. CCP 25 also inhibited translation of brome mosaic virus (BMV) and pokeweed mosaic virus (PMV) RNAs in rabbit reticulocyte translation system. The radioactive assay showed that incorporation of [35S]-methionine was less in translation proteins of BMV nucleic acid when CCP 25 was added to translation system. This indicated that antiviral protein from Celosia cristata not only depurinated ribosomal RNA but also inhibited translation of viral RNA in vitro.  相似文献   
19.
20.
Pokeweed antiviral protein (PAP), a ribosome-inactivating protein isolated from Phytolacca americana, is characterized by its ability to depurinate the sarcin/ricin (S/R) loop of the large rRNA of prokaryotic and eukaryotic ribosomes. In this study, we present evidence that PAP is associated with ribosomes and depurinates tobacco ribosomes in vivo by removing more than one adenine and a guanine. A mutant of pokeweed antiviral protein, PAPn, which has a single amino acid substitution (G75D), did not bind ribosomes efficiently, indicating that Gly-75 in the N-terminal domain is critical for the binding of PAP to ribosomes. PAPn did not depurinate ribosomes and was non-toxic when expressed in transgenic tobacco plants. Unlike wild-type PAP and a C-terminal deletion mutant, transgenic plants expressing PAPn did not have elevated levels of acidic pathogenesis-related (PR) proteins. PAPn, like other forms of PAP, did not trigger production of salicylic acid (SA) in transgenic plants. Expression of the basic PR proteins, the wound-inducible protein kinase and protease inhibitor II, was induced in PAPn-expressing transgenic plants and these plants were resistant to viral and fungal infection. These results demonstrate that PAPn activates a particular SA-independent, stress-associated signal transduction pathway and confers pathogen resistance in the absence of ribosome binding, rRNA depurination and acidic PR protein production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号