首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   15篇
  2023年   4篇
  2022年   2篇
  2021年   7篇
  2020年   5篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   9篇
  2015年   15篇
  2014年   13篇
  2013年   13篇
  2012年   20篇
  2011年   12篇
  2010年   13篇
  2009年   7篇
  2008年   9篇
  2007年   13篇
  2006年   8篇
  2005年   11篇
  2004年   9篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  1999年   2篇
  1998年   1篇
  1993年   2篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有217条查询结果,搜索用时 109 毫秒
71.
A new continuous supercritical water gasification reactor was designed to investigate glucose gasification in supercritical water at high temperatures and low residence times. A 2(3) full factorial experiment was performed to determine the effects of feed concentration, temperature, and residence time on glucose gasification. The temperature levels (750°C and 800°C) were higher than ever used, while the residence times (4 and 6.5s) were shorter than ever used in previous supercritical water gasification studies. The reactor proved capable of attaining higher gasification rates than previously shown with high efficiencies and yields. In addition, the glucose gasification reaction was modeled by estimating activation energy and reaction order of glucose gasification in supercritical water.  相似文献   
72.
We made use of EXLX1, an expansin from Bacillus subtilis, to investigate protein features essential for its plant cell wall binding and wall loosening activities. We found that the two expansin domains, D1 and D2, need to be linked for wall extension activity and that D2 mediates EXLX1 binding to whole cell walls and to cellulose via distinct residues on the D2 surface. Binding to cellulose is mediated by three aromatic residues arranged linearly on the putative binding surface that spans D1 and D2. Mutation of these three residues to alanine eliminated cellulose binding and concomitantly eliminated wall loosening activity measured either by cell wall extension or by weakening of filter paper but hardly affected binding to whole cell walls, which is mediated by basic residues located on other D2 surfaces. Mutation of these basic residues to glutamine reduced cell wall binding but not wall loosening activities. We propose domain D2 as the founding member of a new carbohydrate binding module family, CBM63, but its function in expansin activity apparently goes beyond simply anchoring D1 to the wall. Several polar residues on the putative binding surface of domain D1 are also important for activity, most notably Asp82, whose mutation to alanine or asparagine completely eliminated wall loosening activity. The functional insights based on this bacterial expansin may be extrapolated to the interactions of plant expansins with cell walls.  相似文献   
73.
12R-lipoxygenase (12R-LOX) and the epidermal LOX-3 (eLOX-3) constitute a novel LOX pathway involved in terminal differentiation in skin. This view is supported by recent studies showing that inactivating mutations in 12R-LOX and eLOX-3 are linked to the development of autosomal recessive congenital ichthyosis. We show that 12R-LOX deficiency in mice results in a severe impairment of skin barrier function. Loss of barrier function occurs without alterations in proliferation and stratified organization of the keratinocytes, but is associated with ultrastructural anomalies in the upper granular layer, suggesting perturbance of the assembly/extrusion of lamellar bodies. Cornified envelopes from skin of 12R-LOX-deficient mice show increased fragility. Lipid analysis demonstrates a disordered composition of ceramides, in particular a decrease of ester-bound ceramide species. Moreover, processing of profilaggrin to monomeric filaggrin is impaired. This study indicates that the 12R-LOX-eLOX-3 pathway plays a key role in the process of epidermal barrier acquisition by affecting lipid metabolism, as well as protein processing.  相似文献   
74.
Leptin-induced increases in insulin sensitivity are well established and may be related to the effects of leptin on lipid metabolism. However, the effects of leptin on the levels of lipid metabolites implicated in pathogenesis of insulin resistance and the effects of leptin on lipid-induced insulin resistance are unknown. The current study addressed in rats the effects of hyperleptinemia (HL) on insulin action and markers of skeletal muscle (SkM) lipid metabolism in the absence or presence of acute hyperlipidemia induced by an infusion of a lipid emulsion. Compared with controls (CONT), HL increased insulin sensitivity, as assessed by hyperinsulinemic-euglycemic clamp ( approximately 15%), and increased SkM Akt ( approximately 30%) and glycogen synthase kinase 3 alpha ( approximately 52%) phosphorylation. These improvements in insulin action were associated with decreased SkM triglycerides (TG; approximately 61%), elevated ceramides ( approximately 50%), and similar diacylglycerol (DAG) levels in HL compared with CONT. Acute hyperlipidemia in CONT decreased insulin sensitivity ( approximately 25%) and increased SkM DAG ( approximately 33%) and ceramide ( approximately 60%) levels. However, hyperlipidemia did not induce insulin resistance or SkM DAG and ceramide accumulation in HL. SkM total fatty acid transporter CD36, plasma membrane fatty acid binding protein, acetyl Co-A carboxylase phosphorylation, and fatty acid oxidation were similar in HL compared with CONT. However, HL decreased SkM protein kinase C theta (PKC theta), a kinase implicated in mediating the detrimental effects of lipids on insulin action. We conclude that increases in insulin sensitivity induced by HL are associated with decreased levels of SkM TG and PKC theta and increased SkM insulin signaling, but not with decreases in other lipid metabolites implicated in altering SkM insulin sensitivity (DAG and ceramide). Furthermore, insulin resistance induced by an acute lipid infusion is prevented by HL.  相似文献   
75.
The application of 2D-NMR spectroscopy and Molecular Modeling in determining the active conformation of flexible molecules in 3D-QSAR was demonstrated in the present study. In particular, a series of 33 flexible synthetic phospholipids, either 2-(4-alkylidene-cyclohexyloxy)ethyl- or omega-cycloalkylidene-substituted ether phospholipids were systematically evaluated for their in vitro antileishmanial activity against the promastigote forms of Leishmania infantum and Leishmania donovani by CoMFA and CoMSIA 3D-QSAR studies. Steric and hydrophobic properties of the phospholipids under study appear to govern their antileishmanial activity against both strains, while the electrostatic properties have no significant contribution. The acknowledgment of these important properties of the pharmacophore will aid in the rational design of new analogues with higher activity.  相似文献   
76.
The subcellular distribution of the G protein-coupled receptor GPR37 affects cell viability and is implicated in the pathogenesis of parkinsonism. Intracellular accumulation and aggregation of GPR37 cause cell death, whereas GPR37 located in the plasma membrane provides cell protection. We define here a pathway through which the recently identified natural ligand, prosaposin, promotes plasma membrane association of GPR37. Immunoabsorption of extracellular prosaposin reduced GPR37tGFP surface density and decreased cell viability in catecholaminergic N2a cells. We found that GPR37tGFP partitioned in GM1 ganglioside-containing lipid rafts in the plasma membrane of live cells. This partitioning required extracellular prosaposin and was disrupted by lipid raft perturbation using methyl-β-cyclodextrin or cholesterol oxidase. Moreover, complex formation between GPR37tGFP and the GM1 marker cholera toxin was observed in the plasma membrane. These data show functional association between GPR37, prosaposin, and GM1 in the plasma membrane. These results thus tie together the three previously defined components of the cellular response to insult. Our findings identify a mechanism through which the receptor''s natural ligand and GM1 may protect against toxic intracellular GPR37 aggregates observed in parkinsonism.  相似文献   
77.
Mammalian glutamate dehydrogenase (GDH) catalyzes the reversible inter-conversion of glutamate to α-ketoglutarate and ammonia, interconnecting carbon skeleton and nitrogen metabolism. In addition, it functions as an energy switch by its ability to fuel the Krebs cycle depending on the energy status of the cell. As GDH lies at the intersection of several metabolic pathways, its activity is tightly regulated by several allosteric compounds that are metabolic intermediates. In contrast to other mammals that have a single GDH-encoding gene, humans and great apes possess two isoforms of GDH (hGDH1 and hGDH2, encoded by the GLUD1 and GLUD2 genes, respectively) with distinct regulation pattern, but remarkable sequence similarity (they differ, in their mature form, in only 15 of their 505 amino-acids). The GLUD2 gene is considered a very young gene, emerging from the GLUD1 gene through retro-position only recently (<23 million years ago). The new hGDH2 iso-enzyme, through random mutations and natural selection, is thought to have conferred an evolutionary advantage that helped its persistence through primate evolution. The properties of the two highly homologous human GDHs have been studied using purified recombinant hGDH1 and hGDH2 proteins obtained by expression of the corresponding cDNAs in Sf21 cells. According to these studies, in contrast to hGDH1 that maintains basal activity at 35–40 % of its maximal, hGDH2 displays low basal activity that is highly responsive to activation by rising levels of ADP and/or l-leucine which can also act synergistically. While hGDH1 is inhibited potently by GTP, hGDH2 shows remarkable GTP resistance. Furthermore, the two iso-enzymes are differentially inhibited by estrogens, polyamines and neuroleptics, and also differ in heat-lability. To elucidate the molecular mechanisms that underlie these different regulation patterns of the two iso-enzymes (and consequently the evolutionary adaptation of hGDH2 to a new functional role), we have performed mutagenesis at sites of difference in their amino acid sequence. Results showed that the low basal activity, heat-lability and estrogen sensitivity of hGDH2 could be, at least partially, ascribed to the Arg443Ser evolutionary change, whereas resistance to GTP inhibition has been attributed to the Gly456Ala change. Other amino acid substitutions studied thus far cannot explain all the remaining functional differences between the two iso-enzymes. Also, the Arg443Ser/Gly456Ala double mutation in hGDH1 approached the properties of wild-type hGDH2, without being identical to it. The insights into the structural mechanism of enzymatic regulation and the implications in cell biology provided by these findings are discussed.  相似文献   
78.
Adduct formation, fragmentation events and matrix effects impose special challenges to the identification and quantitation of metabolites in LC-ESI-MS datasets. An important step in compound identification is the deconvolution of mass signals. During this processing step, peaks representing adducts, fragments, and isotopologues of the same analyte are allocated to a distinct group, in order to separate peaks from coeluting compounds. From these peak groups, neutral masses and pseudo spectra are derived and used for metabolite identification via mass decomposition and database matching. Quantitation of metabolites is hampered by matrix effects and nonlinear responses in LC-ESI-MS measurements. A common approach to correct for these effects is the addition of a U-13C-labeled internal standard and the calculation of mass isotopomer ratios for each metabolite. Here we present a new web-platform for the analysis of LC-ESI-MS experiments. ALLocator covers the workflow from raw data processing to metabolite identification and mass isotopomer ratio analysis. The integrated processing pipeline for spectra deconvolution “ALLocatorSD” generates pseudo spectra and automatically identifies peaks emerging from the U-13C-labeled internal standard. Information from the latter improves mass decomposition and annotation of neutral losses. ALLocator provides an interactive and dynamic interface to explore and enhance the results in depth. Pseudo spectra of identified metabolites can be stored in user- and method-specific reference lists that can be applied on succeeding datasets. The potential of the software is exemplified in an experiment, in which abundance fold-changes of metabolites of the l-arginine biosynthesis in C. glutamicum type strain ATCC 13032 and l-arginine producing strain ATCC 21831 are compared. Furthermore, the capability for detection and annotation of uncommon large neutral losses is shown by the identification of (γ-)glutamyl dipeptides in the same strains. ALLocator is available online at: https://allocator.cebitec.uni-bielefeld.de. A login is required, but freely available.  相似文献   
79.
ABL tyrosine kinase inhibitors (TKI) like Imatinib, Dasatinib and Nilotinib are the gold standard in conventional treatment of CML. However, the emergence of resistance remains a major problem. Alternative therapeutic strategies of ABL TKI-resistant CML are urgently needed. We asked whether dual inhibition of BCR-ABL and Aurora kinases A-C could overcome resistance mediated by ABL kinase mutations. We therefore tested the dual ABL and Aurora kinase inhibitors PHA-739358 and R763/AS703569 in Ba/F3- cells ectopically expressing wild type (wt) or TKI-resistant BCR-ABL mutants. We show that both compounds exhibited strong anti-proliferative and pro-apoptotic activity in ABL TKI resistant cell lines including cells expressing the strongly resistant T315I mutation. Cell cycle analysis indicated polyploidisation, a consequence of continued cell cycle progression in the absence of cell division by Aurora kinase inhibition. Experiments using drug resistant variants of Aurora B indicated that PHA-739358 acts on both, BCR-ABL and Aurora Kinase B, whereas Aurora kinase B inhibition might be sufficient for the anti-proliferative activity observed with R763/AS703569. Taken together, our data demonstrate that dual ABL and Aurora kinase inhibition might be used to overcome ABL TKI resistant CML.  相似文献   
80.
Summary: A wide spectrum of pathogenic bacteria and protozoa has adapted to an intracellular life-style, which presents several advantages, including accessibility to host cell metabolites and protection from the host immune system. Intracellular pathogens have developed strategies to enter and exit their host cells while optimizing survival and replication, progression through the life cycle, and transmission. Over the last decades, research has focused primarily on entry, while the exit process has suffered from neglect. However, pathogen exit is of fundamental importance because of its intimate association with dissemination, transmission, and inflammation. Hence, to fully understand virulence mechanisms of intracellular pathogens at cellular and systemic levels, it is essential to consider exit mechanisms to be a key step in infection. Exit from the host cell was initially viewed as a passive process, driven mainly by physical stress as a consequence of the explosive replication of the pathogen. It is now recognized as a complex, strategic process termed “egress,” which is just as well orchestrated and temporally defined as entry into the host and relies on a dynamic interplay between host and pathogen factors. This review compares egress strategies of bacteria, pathogenic yeast, and kinetoplastid and apicomplexan parasites. Emphasis is given to recent advances in the biology of egress in mycobacteria and apicomplexans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号