首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   2篇
  2022年   1篇
  2018年   4篇
  2017年   2篇
  2016年   6篇
  2015年   9篇
  2014年   7篇
  2013年   3篇
  2012年   5篇
  2011年   7篇
  2009年   5篇
  2008年   6篇
  2007年   6篇
  2006年   7篇
  2005年   6篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1992年   2篇
  1990年   1篇
  1986年   1篇
  1985年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
41.
This study investigated the cycling of C and N following application of olive mill wastewater (OMW) at various rates (0, 42, 84, and 168 m3/ha). OMW stimulated respiration rate throughout the study period, but an increase in soil organic matter was observed only at the highest rate. Soil phenol content decreased rapidly within 2 weeks following application but neither phenol oxidase and peroxidase activity nor laccase gene copies could explain this response. Soil NH4 +-N content increased in response to OMW application rate, while an opposite trend observed for NO3 ?-N, which attributed to immobilization. This decrease was in accordance with amoA gene copies of archaeal and bacterial ammonia oxidizers in the first days following OMW application. Afterwards, although amoA gene copies and potential nitrification rates recovered to values similar to or higher than those in the non-treated soils, NO3 ?-N content did not change among the treatments. A corresponding increase in denitrifying gene copies (nirK, nirS, nosZ) during that period indicates that denitrification, stimulated by OMW application rate, was responsible for this effect; a hypothesis consistent with the decrease in total Kjeldahl nitrogen content late in the season. The findings suggest that land application of OMW is a promising practice for OMW management, even at rates approaching the soil water holding capacity.  相似文献   
42.
43.
In eukaryotes, the assembly and elongation of unbranched actin filaments is controlled by formins, which are long, multidomain proteins. These proteins are important for dynamic cellular processes such as determination of cell shape, cell division, and cellular interaction. Yet, no comprehensive study has been done about the origins and evolution of this gene family. We therefore performed extensive phylogenetic and motif analyses of the formin genes by examining 597 prokaryotic and 53 eukaryotic genomes. Additionally, we used three-dimensional protein structure data in an effort to uncover distantly related sequences. Our results suggest that the formin homology 2 (FH2) domain, which promotes the formation of actin filaments, is a eukaryotic innovation and apparently originated only once in eukaryotic evolution. Despite the high degree of FH2 domain sequence divergence, the FH2 domains of most eukaryotic formins are predicted to assume the same fold and thus have similar functions. The formin genes have experienced multiple taxon-specific duplications and followed the birth-and-death model of evolution. Additionally, the formin genes experienced taxon-specific genomic rearrangements that led to the acquisition of unrelated protein domains. The evolutionary diversification of formin genes apparently increased the number of formin's interacting molecules and consequently contributed to the development of a complex and precise actin assembly mechanism. The diversity of formin types is probably related to the range of actin-based cellular processes that different cells or organisms require. Our results indicate the importance of gene duplication and domain acquisition in the evolution of the eukaryotic cell and offer insights into how a complex system, such as the cytoskeleton, evolved.  相似文献   
44.
Resistin-like molecule (RELM)-beta is a cysteine-rich cytokine implicated in insulin resistance and asthmatic responses, but its function remains an enigma. We now report that RELM-beta has a role in promoting airway inflammation and lung remodeling in the mouse lung. RELM-beta is strongly induced by diverse allergens and T helper type 2 (Th2) cytokines by an IL-13- and STAT6-dependent mechanism. To understand the in vivo role of RELM-beta, we delivered recombinant murine RELM-beta intratracheally to na?ve mice. RELM-beta induced dose-dependent leukocyte accumulation (most prominently involving macrophages) and goblet cell hyperplasia. The most prominent effect induced by RELM-beta was increased perivascular and peribronchial collagen deposition. Mice genetically deficient in RELM-beta had reduced accumulation of collagen and goblet cell hyperplasia in an experimental model of allergic airway inflammation. In vitro experiments demonstrated that RELM-beta had fibroblast motogenic activity. These results identify RELM-beta as a Th2-associated cytokine with potent inflammatory and remodeling activity.  相似文献   
45.
Lai ZC  Wei X  Shimizu T  Ramos E  Rohrbaugh M  Nikolaidis N  Ho LL  Li Y 《Cell》2005,120(5):675-685
Appropriate cell number and organ size in a multicellular organism are determined by coordinated cell growth, proliferation, and apoptosis. Disruption of these processes can cause cancer. Recent studies have identified the Large tumor suppressor (Lats)/Warts (Wts) protein kinase as a key component of a pathway that controls the coordination between cell proliferation and apoptosis. Here we describe growth inhibitory functions for a Mob superfamily protein, termed Mats (Mob as tumor suppressor), in Drosophila. Loss of Mats function results in increased cell proliferation, defective apoptosis, and induction of tissue overgrowth. We show that mats and wts function in a common pathway. Mats physically associates with Wts to stimulate the catalytic activity of the Wts kinase. A human Mats ortholog (Mats1) can rescue the lethality associated with loss of Mats function in Drosophila. As Mats1 is mutated in human tumors, Mats-mediated growth inhibition and tumor suppression is likely conserved in humans.  相似文献   
46.
47.
The postexercise urine lactate concentration is a novel valid exercise biomarker, which has exhibited satisfactory reliability in the morning hours under controlled water intake. The aim of the present study was to investigate the diurnal variation of the postexercise urine lactate concentration and its reliability in the afternoon hours. Thirty-two healthy children (11 boys and 21 girls) and 23 adults (13 men and 10 women) participated in the study. All participants performed two identical sessions of eight 25 m bouts of maximal freestyle swimming executed every 2 min with passive recovery in between. These sessions were performed in the morning and afternoon and were separated by 3–4 days. Adults performed an additional afternoon session that was also separated by 3–4 days. All swimmers drank 500 mL of water before and another 500 mL after each test. Capillary blood and urine samples were collected before and after each test for lactate determination. Urine creatinine, urine density and body water content were also measured. The intraclass correlation coefficient was used as a reliability index between the morning and afternoon tests, as well as between the afternoon test and retest. Swimming performance and body water content exhibited excellent reliability in both children and adults. The postexercise blood lactate concentration did not show diurnal variation, showing a good reliability between the morning and afternoon tests, as well as high reliability between the afternoon test and retest. The postexercise urine density and lactate concentration were affected by time of day. However, when lactate was normalized to creatinine, it exhibited excellent reliability in children and good-to-high reliability in adults. The postexercise urine lactate concentration showed high reliability between the afternoon test and retest, independent of creatinine normalization. The postexercise blood and urine lactate concentrations were significantly correlated in all cases, attesting to the validity of urine lactate as an index of anaerobic metabolism. We conclude that urine lactate, after normalization to creatinine, could be used in training practice either in the morning or in the afternoon. Further research is needed to assess the applicability of this novel exercise biomarker.  相似文献   
48.
49.
A novel automatic escalator was designed, constructed and used in the present investigation. The aim of the present investigation was to compare the effect of two repeated sessions of stair descending versus stair ascending exercise on muscle performance and health-related parameters in young healthy men. Twenty males participated and were randomly divided into two equal-sized groups: a stair descending group (muscle-damaging group) and a stair ascending group (non-muscle-damaging group). Each group performed two sessions of stair descending or stair ascending exercise on the automatic escalator while a three week period was elapsed between the two exercise sessions. Indices of muscle function, insulin sensitivity, blood lipid profile and redox status were assessed before and immediately after, as well as at day 2 and day 4 after both exercise sessions. It was found that the first bout of stair descending exercise caused muscle damage, induced insulin resistance and oxidative stress as well as affected positively blood lipid profile. However, after the second bout of stair descending exercise the alterations in all parameters were diminished or abolished. On the other hand, the stair ascending exercise induced only minor effects on muscle function and health-related parameters after both exercise bouts. The results of the present investigation indicate that stair descending exercise seems to be a promising way of exercise that can provoke positive effects on blood lipid profile and antioxidant status.  相似文献   
50.
The level of F2-isoprostanes (F2-IsoP) in blood or urine is widely regarded as the reference marker for the assessment of oxidative stress. As a result, nowadays, F2-IsoP is the most frequently measured oxidative stress marker. Nevertheless, determining F2-IsoP is a challenging task and the measurement is neither free of mishaps nor straightforward. This review presents for the first time the effect of acute and chronic exercise on F2-IsoP levels in plasma, urine and skeletal muscle, placing emphasis on the origin, the methodological caveats and the interpretation of F2-IsoP alterations. From data analysis, the following effects of exercise have emerged: (i) acute exercise clearly increases F2-IsoP levels in plasma and this effect is generally short-lived, (ii) acute exercise and increased contractile activity markedly increase F2-IsoP levels in skeletal muscle, (iii) chronic exercise exhibits trend for decreased F2-IsoP levels in urine but further research is needed. Theoretically, it seems that significant amounts of F2-IsoP can be produced not only from phospholipids but from neutral lipids as well. The origin of F2-IsoP detected in plasma and urine (as done by almost all studies in humans) remains controversial, as a multitude of tissues (including skeletal muscle and plasma) can independently produce F2-IsoP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号