首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   19篇
  2023年   4篇
  2022年   3篇
  2021年   22篇
  2020年   4篇
  2019年   10篇
  2018年   14篇
  2017年   11篇
  2016年   18篇
  2015年   24篇
  2014年   16篇
  2013年   34篇
  2012年   37篇
  2011年   27篇
  2010年   24篇
  2009年   10篇
  2008年   18篇
  2007年   22篇
  2006年   18篇
  2005年   23篇
  2004年   21篇
  2003年   13篇
  2002年   13篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   5篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
  1970年   2篇
  1966年   2篇
  1942年   1篇
  1939年   2篇
排序方式: 共有430条查询结果,搜索用时 17 毫秒
51.
Junctional adhesion molecule A (JAM-A) is a unique tight junction (TJ) transmembrane protein that under basal conditions maintains endothelial cell-cell interactions but under inflammatory conditions acts as a leukocyte adhesion molecule. This study investigates the fate of JAM-A during inflammatory TJ complex remodeling and paracellular route formation in brain endothelial cells. The chemokine (C-C motif) ligand 2 (CCL2) induced JAM-A redistribution from the interendothelial cell area to the apical surface, where JAM-A played a role as a leukocyte adhesion molecule participating in transendothelial cell migration of neutrophils and monocytes. JAM-A redistribution was associated with internalization via macropinocytosis during paracellular route opening. A tracer study with dextran-Texas Red indicated that internalization occurred within a short time period (~10 min) by dextran-positive vesicles and then became sorted to dextran-positive/Rab34-positive/Rab5-positive vesicles and then Rab4-positive endosomes. By ~20 min, most internalized JAM-A moved to the brain endothelial cell apical membrane. Treatment with a macropinocytosis inhibitor, 5-(N-ethyl-N-isopropyl)amiloride, or Rab5/Rab4 depletion with small interfering RNA oligonucleotides prevented JAM-A relocalization, suggesting that macropinocytosis and recycling to the membrane surface occur during JAM-A redistribution. Analysis of the signaling pathways indicated involvement of RhoA and Rho kinase in JAM-A relocalization. These data provide new insights into the molecular and cellular mechanisms involved in blood-brain barrier remodeling during inflammation.  相似文献   
52.
The family of AAA+ proteins in eukaryotes has many members in various cellular compartments with a broad spectrum of functions in protein unfolding and degradation. The mitochondrial AAA protein Bcs1 plays an unusual role in protein translocation. It is involved in the topogenesis of the Rieske protein, Rip1, and thereby in the biogenesis of the cytochrome bc(1) complex of the mitochondrial respiratory chain. Bcs1 mediates the export of the folded FeS domain of Rip1 across the mitochondrial inner membrane and the insertion of its transmembrane segment into an assembly intermediate of the cytochrome bc(1) complex. We discuss structural elements of the Bcs1 protein compared to other AAA proteins in an attempt to understand the mechanism of its function. In this context, we discuss human diseases caused by mutations in Bcs1 that lead to different properties of the protein and subsequently to different symptoms.  相似文献   
53.
The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggie effects on Src tyrosine kinases and epidermal growth factor receptor (EGFR): loss of reggies reduces Src activation and EGFR phosphorylation at residues targeted by Src and c-cbl and leads to increased surface exposure of EGFR by blocking its internalization. The prolonged EGFR signaling at the plasma membrane enhances cell motility and macropinocytosis, by which junction-associated E-cadherin is internalized and recycled back to AJs. Accordingly, blockage of EGFR signaling or macropinocytosis in reggie-deficient cells restores normal AJ formation. Thus, by promoting EGFR internalization, reggies restrict the EGFR signaling involved in E-cadherin macropinocytosis and recycling and regulate AJ formation and dynamics and thereby cell adhesion.  相似文献   
54.
In the early embryo, a series of symmetric, paired vessels, the aortic arches, surround the foregut and distribute cardiac output to the growing embryo and fetus. During embryonic development, the arch vessels undergo large-scale asymmetric morphogenesis to form species-specific adult great vessel patterns. These transformations occur within a dynamic biomechanical environment, which can play an important role in the development of normal arch configurations or the aberrant arch morphologies associated with congenital cardiac defects. Arrested migration and rotation of the embryonic outflow tract during late stages of cardiac looping has been shown to produce both outflow tract and several arch abnormalities. Here, we investigate how changes in flow distribution due to a perturbation in the angular orientation of the embryonic outflow tract impact the morphogenesis and growth of the aortic arches. Using a combination of in vivo arch morphometry with fluorescent dye injection and hemodynamics-driven bioengineering optimization-based vascular growth modeling, we demonstrate that outflow tract orientation significantly changes during development and that the associated changes in hemodynamic load can dramatically influence downstream aortic arch patterning. Optimization reveals that balancing energy expenditure with diffusive capacity leads to multiple arch vessel patterns as seen in the embryo, while minimizing energy alone led to the single arch configuration seen in the mature arch of aorta. Our model further shows the critical importance of the orientation of the outflow tract in dictating morphogenesis to the adult single arch and accurately predicts arch IV as the dominant mature arch of aorta. These results support the hypothesis that abnormal positioning of the outflow tract during early cardiac morphogenesis may lead to congenital defects of the great vessels due to altered hemodynamic loading.  相似文献   
55.
56.
We examined the influence of parental age on life history traits of their offspring in the lines of bean weevil that have evolved different rates of senescence. Measurements included preadult traits (egg size, embryonic developmental time, total preadult developmental time, preadult viability) and adult traits (body weight, total realized fecundity of females, first day of egg laying, early fecundity, late fecundity and longevity). The negative parental age effects were observed for all traits except for the early and total realized fecundity. We did not detect statistically significant line×parental age interactions for either preadult- or adult-survival, so offspring survival did not change with parental age after selection for early vs. late reproduction. It seems that selection acting on the quality of offspring produced by parents of different ages has not been responsible for the evolution of senescence in bean weevil. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
57.
58.
59.

The inherent stochasticity of gene expression in the context of regulatory networks profoundly influences the dynamics of the involved species. Mathematically speaking, the propagators which describe the evolution of such networks in time are typically defined as solutions of the corresponding chemical master equation (CME). However, it is not possible in general to obtain exact solutions to the CME in closed form, which is due largely to its high dimensionality. In the present article, we propose an analytical method for the efficient approximation of these propagators. We illustrate our method on the basis of two categories of stochastic models for gene expression that have been discussed in the literature. The requisite procedure consists of three steps: a probability-generating function is introduced which transforms the CME into (a system of) partial differential equations (PDEs); application of the method of characteristics then yields (a system of) ordinary differential equations (ODEs) which can be solved using dynamical systems techniques, giving closed-form expressions for the generating function; finally, propagator probabilities can be reconstructed numerically from these expressions via the Cauchy integral formula. The resulting ‘library’ of propagators lends itself naturally to implementation in a Bayesian parameter inference scheme, and can be generalised systematically to related categories of stochastic models beyond the ones considered here.

  相似文献   
60.
Several oxidative enzymes [NADH-TR (reduced nicotinamide-adenine dinucleotide-tetrazolium reductase), NADPH-TR (reduced nicotinamide-adenine dinucleotide phosphate-tetrazolium reductase), SDH (succinic dehydrogenase) and LDH (lactate dehydrogenase)] were studied by histochemical means during early development of rat and mouse. All investigated enzymes could be easily demonstrated in zygote and also to some extent in somitic stages without any pretreatment. However, in cleavage and early postimplantation stages enzyme activity could be revealed only after the embryos were pretreated in some way. This pretreatment can be fixation with formalin or acetone, freezing and thawing, slight mechanical damage or very prolonged incubation time. The formazan granules as a sign of enzymatic activity were present in all stages of embryonic development and were more abundant in reactions for NADH-TR and LDH than in reactions for NADPH-TR and SDH. Our results suggest that the investigated enzymes are present in all embryonic cells during early development. It seems that the permeability of embryonic cells for histochemical media must be increased otherwise the histochemical reactions cannot be accomplished.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号