首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   328篇
  免费   26篇
  2024年   2篇
  2023年   8篇
  2022年   5篇
  2021年   21篇
  2020年   9篇
  2019年   14篇
  2018年   29篇
  2017年   14篇
  2016年   16篇
  2015年   27篇
  2014年   19篇
  2013年   19篇
  2012年   27篇
  2011年   27篇
  2010年   10篇
  2009年   10篇
  2008年   10篇
  2007年   11篇
  2006年   9篇
  2005年   7篇
  2004年   11篇
  2003年   7篇
  2002年   14篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1995年   2篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1979年   1篇
排序方式: 共有354条查询结果,搜索用时 31 毫秒
71.
72.
Synthesis of series [17(20)Z]- and [17(20)E]-pregna-5,17(20)-dien-21-oyl amides, containing polar substituents in amide moiety, based on rearrangement of 17α-bromo-21-iodo-3β-acetoxypregn-5-en-20-one caused by amines, is presented. The titled compounds were evaluated for their potency to regulate sterol and triglyceride biosynthesis in human hepatoma Hep G2 cells in comparison with 25-hydroxycholesterol. Three [17(20)E]-pregna-5,17(20)-dien-21-oyl amides at a concentrations of 5 μM inhibited sterol biosynthesis and stimulated triglyceride biosynthesis; their regulatory potency was dependent on the structure of amide moiety; the isomeric [17(20)Z]-pregna-5,17(20)-dien-21-oyl amides were inactive.  相似文献   
73.
Two series of benzenesulfonamides bearing methyl groups at ortho/ortho or meta/ortho positions and a pyrrolidinone moiety at para position were synthesized and tested as inhibitors of the twelve catalytically active human carbonic anhydrase (CA) isoforms. Observed binding affinities were determined by fluorescent thermal shift assay and intrinsic binding affinities representing the binding of benzenesulfonamide anion to the Zn(II)-bound water form of CA were calculated. Introduction of dimethyl groups into benzenesulfonamide ring decreased the binding affinity to almost all CA isoforms, but gained in selectivity towards one CA isoform. A chloro group at the meta position of 2,6-dimethylbenzenesulfonamide derivatives did not influence the binding to CA I, but it increased the affinity to all other CAs, especially, CA VII and CA XIII (up to 500 fold). The compounds may be used for further development of CA inhibitors with higher selectivity to particular CA isoforms.  相似文献   
74.
75.
Activity of the epithelial Na+ channel (ENaC) is limiting for Na+ absorption across many epithelia. Consequently, ENaC is a central effector impacting systemic blood volume and pressure. Two members of the Ras superfamily of small GTPases, K-Ras and RhoA, activate ENaC. K-Ras activates ENaC via a signaling pathway involving phosphatidylinositol 3-kinase and production of phosphatidylinositol 3,4,5-trisphosphate with the phospholipid directly interacting with the channel to increase open probability. How RhoA increases ENaC activity is less clear. Here we report that RhoA and K-Ras activate ENaC through independent signaling pathways and final mechanisms of action. Activation of RhoA signaling rapidly increases the membrane levels of ENaC likely by promoting channel insertion. This process dramatically increases functional ENaC current, resulting in tight spatial-temporal control of these channels. RhoA signals to ENaC via a transduction pathway, including the downstream effectors Rho kinase and phosphatidylinositol-4-phosphate 5-kinase. Phosphatidylinositol 4,5-biphosphate produced by activated phosphatidylinositol 4-phosphate 5-kinase may play a role in targeting vesicles containing ENaC to the plasma membrane.  相似文献   
76.
Voltage-gated K(+) channels of the Kv7 family underlie the neuronal M current that regulates action potential firing. Suppression of M current increases excitability and its enhancement can silence neurons. We here show that three of five Kv7 channels undergo strong enhancement of their activity by oxidative modification induced by physiological concentrations of hydrogen peroxide. A triple cysteine pocket in the channel S2-S3 linker is critical for this effect. Oxidation-induced enhancement of M current produced a hyperpolarization and a dramatic reduction of action potential firing frequency in rat sympathetic neurons. As hydrogen peroxide is robustly produced during hypoxia-induced oxidative stress, we used an oxygen/glucose deprivation neurodegeneration model that showed neuronal death to be severely accelerated by M current blockade. Such blockade had no effect on survival of normoxic neurons. This work describes a novel pathway of M-channel regulation and suggests a role for M channels in protective neuronal silencing during oxidative stress.  相似文献   
77.
Recently, meta-analysis has been widely utilized to combine information across comparative clinical studies for evaluating drug efficacy or safety profile. When dealing with rather rare events, a substantial proportion of studies may not have any events of interest. Conventional methods either exclude such studies or add an arbitrary positive value to each cell of the corresponding 2 x 2 tables in the analysis. In this article, we present a simple, effective procedure to make valid inferences about the parameter of interest with all available data without artificial continuity corrections. We then use the procedure to analyze the data from 48 comparative trials involving rosiglitazone with respect to its possible cardiovascular toxicity.  相似文献   
78.
In humans, sex hormone-binding globulin (SHBG) binds and transports the biologically most important androgens and estrogens in the blood, and regulates the access of these steroids to their targets tissues. In addition to binding sex steroids, SHBG has specific binding sites for divalent cations including calcium and zinc. Zinc binding to a site at the entrance of the steroid-binding pocket in human SHBG has been shown to reduce its affinity for estrogens, while having no impact on the binding of C19 steroids. Crystallographic studies indicate that C18 and C19 steroids are bound in opposite orientations within the SHBG steroid-binding site, and we have obtained new information that supports a molecular model explaining the mechanism by which zinc alters the affinity of human SHBG for estrogens, by studying directly the estradiol-binding properties SHBG variants created by site-directed mutagenesis. In this model, the coordination of a zinc ion by the side chains of residues Asp65 and His136 eliminates a critical hydrogen bond between Asp65 and the hydroxyl at C3 of estrogens, such as estradiol and 2-methoxyestradiol, and causes disorder in a polypeptide loop segment that covers the steroid-binding site. The combination of these structural changes explains the specific decrease in the affinity of human SHBG for C18 steroids in the presence of a zinc ion.  相似文献   
79.
In a crystal structure of the amino-terminal laminin G-like domain of human sex hormone-binding globulin (SHBG), the biologically active estrogen metabolite, 2-methoxyestradiol (2-MeOE2), binds in the same orientation as estradiol. The high affinity of SHBG for 2-MeOE2 relies primarily on hydrogen bonding between the hydroxyl at C-3 of 2-MeOE2 and Asp(65) and an interaction between the methoxy group at C-2 and the amido group of Asn(82). Accommodation of the 2-MeOE2 methoxy group causes an outward displacement of residues Ser(128)-Pro(130), which appears to disorder and displace the loop region (Leu(131)-His(136)) that covers the steroid-binding site. This could influence the binding kinetics of 2-MeOE2 and/or facilitate ligand-dependent interactions between SHBG and other proteins. Occupancy of a zinc-binding site reduces the affinity of SHBG for 2-MeOE2 and estradiol in the same way. The higher affinity of SHBG for estradiol derivatives with a halogen atom at C-2 is due to either enhanced hydrogen bonding between the hydroxyl at C-3 and Asp(65) (2-fluoroestradiol) or accommodation of the functional group at C-2 (2-bromoestradiol), rather than an interaction with Asn(82). By contrast, the low affinity of SHBG for 2-hydroxyestradiol can be attributed to intra-molecular hydrogen bonding between the hydroxyls in the aromatic steroid ring A, which generates a steric clash with the amido group of Asn(82). Understanding how C-2 derivatives of estradiol interact with SHBG could facilitate the design of biologically active synthetic estrogens.  相似文献   
80.
Huber S  Uhlemann A  Gamper N  Duranton C  Lang F  Kremsner P 《Trends in parasitology》2002,18(8):346; author reply 346-346; author reply 347
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号