首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   505篇
  免费   38篇
  2023年   2篇
  2022年   3篇
  2021年   2篇
  2020年   5篇
  2019年   12篇
  2018年   15篇
  2017年   8篇
  2016年   19篇
  2015年   25篇
  2014年   33篇
  2013年   32篇
  2012年   44篇
  2011年   41篇
  2010年   31篇
  2009年   18篇
  2008年   42篇
  2007年   20篇
  2006年   23篇
  2005年   19篇
  2004年   26篇
  2003年   14篇
  2002年   16篇
  2001年   8篇
  2000年   5篇
  1999年   9篇
  1998年   9篇
  1997年   5篇
  1996年   6篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   6篇
  1988年   7篇
  1987年   6篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1979年   1篇
  1972年   1篇
排序方式: 共有543条查询结果,搜索用时 890 毫秒
41.
The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-β-glucanases, β-glucosidases, β-cellobiohydrolases, β-galactosidase, and β-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of β-galactosidases/α-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales).Microorganisms producing diverse glycosyl hydrolases (GHs) are widespread and typically thrive in environments where plant materials tend to accumulate and deteriorate (42, 73). The habitats of microorganisms with great GH diversity are the ruminant animal rumen, mouse bowel, and rabbit cecum (10, 24, 26, 28, 49, 74). Microorganisms associated with soil invertebrates in general and with soil earthworms in particular carry out metabolic processes that contribute to element cycling and are essential in sustaining processes which their hosts are unable to perform (20, 52, 72, 76). Although some species of earthworms produce cellulases (15, 55), they generally rely on microbes inhabiting their gastrointestinal (GI) tracts to perform cellulose utilization processes (31, 47, 77). Casts are of special interest in this respect. Considering that the overall numbers of cellulolytic microbes in earthworm casts are greater than those in soil (57), earthworm casts seem to play an important role in the decomposition of plant litter, serving as an inoculum for cellulosic substrates (9). It is important to note that microorganisms from preingested substratum (soil or plant litter) are predominant in the gut lumen (20); however, microbial populations in earthworm casts differ from those in soil in terms of diversity and the relative abundance of different taxa (29, 57, 63). It is anticipated that the enzymatic repertoire of such microbial communities must be especially broad toward diverse sugar-based polymeric, oligomeric, and monomeric substrates; however, among approximately 115 families of GHs with thousands of members known to date (12), none of the GHs have been derived from microorganisms of earthworm-associated microbial communities.The aim of the present work was therefore to examine the diversity of GHs in metagenome libraries derived from fresh casts of Aporrectodea caliginosa and Lumbricus terrestris earthworms via functional screening. Other important tasks of this work were to characterize individual enzymes and to gain insight into their structural-functional features. Finally, we performed sequence analysis of large contiguous DNA fragments of fosmids harboring the genes for GHs to associate them with the organism(s) that may produce them, which was complemented by conventional small-subunit (SSU) rRNA clone library sequencing analysis.  相似文献   
42.
The mycobacterial cell envelope has been implicated in the pathogenicity of tuberculosis and therefore has been a prime target for the identification and characterization of surface proteins with potential application in drug and vaccine development. In this study, the genome of Mycobacterium tuberculosis H37Rv was screened using Machine Learning tools that included feature-based predictors, general localizers and transmembrane topology predictors to identify proteins that are potentially secreted to the surface of M. tuberculosis, or to the extracellular milieu through different secretory pathways. The subcellular localization of a set of 8 hypothetically secreted/surface candidate proteins was experimentally assessed by cellular fractionation and immunoelectron microscopy (IEM) to determine the reliability of the computational methodology proposed here, using 4 secreted/surface proteins with experimental confirmation as positive controls and 2 cytoplasmic proteins as negative controls. Subcellular fractionation and IEM studies provided evidence that the candidate proteins Rv0403c, Rv3630, Rv1022, Rv0835, Rv0361 and Rv0178 are secreted either to the mycobacterial surface or to the extracellular milieu. Surface localization was also confirmed for the positive controls, whereas negative controls were located on the cytoplasm. Based on statistical learning methods, we obtained computational subcellular localization predictions that were experimentally assessed and allowed us to construct a computational protocol with experimental support that allowed us to identify a new set of secreted/surface proteins as potential vaccine candidates.  相似文献   
43.
The functional genomics project “TrichoEST” was developed focused on different taxonomic groups of Trichoderma with biocontrol potential. Four cDNA libraries were constructed, using similar growth conditions, from four different Trichoderma strains: Trichoderma longibrachiatum T52, Trichoderma asperellum T53, Trichoderma virens T59, and Trichoderma sp. T78. In this study, we present the analysis of the 8,160 expressed sequence tags (ESTs) generated. Each EST library was independently assembled and 1,000–1,300 unique sequences were identified in each strain. First, we queried our collection of ESTs against the NCBI nonredundant database using the BLASTX algorithm. Moreover, using the Gene Ontology hierarchy, we performed the annotation of 40.9% of the unique sequences. Later, based on the EST abundance, we examined the highly expressed genes in the four strains. A hydrophobin was found as the gene expressed at the highest level in two of the strains, but we also found that other unique sequences similar to the HEX1, QID3, and NMT1 proteins were highly represented in at least two of the Trichoderma strains. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
44.
The induction of immune tolerance is essential for the maintenance of immune homeostasis and to limit the occurrence of exacerbated inflammatory and autoimmune conditions. Multiple mechanisms act together to ensure self-tolerance, including central clonal deletion, cytokine deviation and induction of regulatory T cells. Identifying the factors that regulate these processes is crucial for the development of new therapies of autoimmune diseases and transplantation. The vasoactive intestinal peptide (VIP) is a well-characterized endogenous anti-inflammatory neuropeptide with therapeutic potential for a variety of immune disorders. Here, we examine the latest research findings, which indicate that VIP participates in maintaining immune tolerance in two distinct ways: by regulating the balance between pro-inflammatory and anti-inflammatory factors, and by inducing the emergence of regulatory T cells with suppressive activity against autoreactive T-cell effectors.  相似文献   
45.
Adaptation of Microcystis aeruginosa (Cyanobacteria) to resist the herbicide glyphosate was analysed by using an experimental model. Growth of wild-type, glyphosate-sensitive (Gs) cells was inhibited when they were cultured with 120 ppm glyphosate, but after further incubation for several weeks, occasionally the growth of rare cells resistant (Gr) to the herbicide was found. A fluctuation analysis was carried out to distinguish between resistant cells arising from rare spontaneous mutations and resistant cells arising from other mechanisms of adaptation. Resistant cells arose by rare spontaneous mutations prior to the addition of glyphosate, with a rate ranging from 3.1 × 10−7 to 3.6 × 10−7 mutants per cell per generation in two strains of M. aeruginosa; the frequency of the Gr allele ranged from 6.14 × 10−4 to 6.54 × 10−4. The Gr mutants are slightly elliptical in outline, whereas the Gs cells are spherical. Since Gr mutants have a diminished growth rate, they may be maintained in uncontaminated waters as the result of a balance between new resistants arising from spontaneous mutation and resistants eliminated by natural selection. Thus, rare spontaneous pre-selective mutations may allow the survival of M. aeruginosa in glyphosate-polluted waters via Gr clone selection.  相似文献   
46.
47.

Main Conclusion

We studied the response of Eugenia myrtifolia L. plants, an ornamental shrub native to tropical and subtropical areas, to salt stress in order to facilitate the use of these plants in Mediterranean areas for landscaping. E. myrtifolia plants implement a series of adaptations to acclimate to salinity, including morphological, physiological and biochemical changes. Furthermore, the post-recovery period seems to be detected by Eugenia plants as a new stress situation. Different physiological and biochemical changes in Eugenia myrtifolia L. plants after being subjected to NaCl stress for up to 30 days (Phase I) and after recovery from salinity (Phase II) were studied. Eugenia plants proved to be tolerant to NaCl concentrations between 44 and 88 mM, displaying a series of adaptative mechanisms to cope with salt-stress, including the accumulation of toxic ions in roots. Plants increased their root/shoot ratio and decreased their leaf area, leaf water potential and stomatal conductance in order to limit water loss. In addition, they displayed different strategies to protect the photosynthetic machinery, including the limited accumulation of toxic ions in leaves, increase in chlorophyll content, changes in chlorophyll fluorescence parameters, leaf anatomy and antioxidant defence mechanisms. Anatomical modifications in leaves, including an increase in palisade parenchyma and intercellular spaces and decrease in spongy parenchyma, served to facilitate CO2 diffusion in a situation of reduced stomatal aperture. Salinity produced oxidative stress in Eugenia plants as evidenced by oxidative stress parameters values and a reduction in APX and ASC levels. Nevertheless, SOD and GSH contents increased. The post-recovery period is detected as a new stress situation, as observed through effects on plant growth and alterations in chlorophyll fluorescence and oxidative stress parameters.
  相似文献   
48.
Sinorhizobium meliloti can exhibit diverse modes of surface translocation whose manifestation depends on the strain. The mechanisms involved and the role played by the different modes of surface motility in the establishment of symbiosis are largely unknown. In this work, we have characterized the surface motility shown by two S. meliloti reference strains (Rm1021 and GR4) under more permissive conditions for surface spreading and analyzed the symbiotic properties of two flagella-less S. meliloti mutants with different behavior on surfaces. The use of Noble agar in semisolid minimal medium induces surface motility in GR4, a strain described so far as non-motile on surfaces. The motility exhibited by GR4 is swarming as revealed by the non-motile phenotype of the flagella-less flaAB mutant. Intriguingly, a flgK mutation which also abolishes flagella production, triggers surface translocation in GR4 through an as yet unknown mechanism. In contrast to GR4, Rm1021 moves over surfaces using mostly a flagella-independent motility which is highly reliant on siderophore rhizobactin 1021 production. Surprisingly, this motility is absent in a flagella-less flgE mutant. In addition, we found that fadD loss-of-function, known to promote surface motility in S. meliloti, exerts different effects on the two reference strains: while fadD inactivation promotes a flagella-independent type of motility in GR4, the same mutation interferes with the surface translocation exhibited by the Rm1021 flaAB mutant. The symbiotic phenotypes shown by GR4flaAB and GR4flgK, non-flagellated mutants with opposite surface motility behavior, demonstrate that flagella-dependent motility positively influences competitiveness for nodule occupation, but is not crucial for optimal infectivity.  相似文献   
49.
50.
Microautophagy of cytosolic proteins by late endosomes   总被引:2,自引:0,他引:2  
Highlights? Late endosomes take up cytosolic proteins through membrane invaginations ? Endosomal microautophagy (eMI) requires multivesicular body formation ? hsc70 mediates selective targeting of cytosolic proteins during eMI ? hsc70 binds to the endosomal membrane through its polybasic cluster  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号