首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7364篇
  免费   1041篇
  2023年   39篇
  2022年   18篇
  2021年   171篇
  2020年   107篇
  2019年   141篇
  2018年   157篇
  2017年   120篇
  2016年   231篇
  2015年   376篇
  2014年   427篇
  2013年   462篇
  2012年   663篇
  2011年   646篇
  2010年   434篇
  2009年   356篇
  2008年   454篇
  2007年   504篇
  2006年   508篇
  2005年   521篇
  2004年   464篇
  2003年   378篇
  2002年   412篇
  2001年   53篇
  2000年   33篇
  1999年   65篇
  1998年   73篇
  1997年   50篇
  1996年   41篇
  1995年   41篇
  1994年   40篇
  1993年   40篇
  1992年   45篇
  1991年   23篇
  1990年   24篇
  1989年   25篇
  1988年   17篇
  1987年   27篇
  1986年   24篇
  1985年   18篇
  1984年   18篇
  1983年   11篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   15篇
  1978年   12篇
  1977年   9篇
  1976年   11篇
  1975年   8篇
  1974年   9篇
排序方式: 共有8405条查询结果,搜索用时 328 毫秒
991.
Because ex vivo rapamycin generates murine Th2 cells that prevent Graft-versus-host disease more potently than control Th2 cells, we hypothesized that rapamycin would generate Th2/Tc2 cells (Th2/Tc2.R cells) that abrogate fully MHC-disparate hemopoietic stem cell rejection more effectively than control Th2/Tc2 cells. In a B6-into-BALB/c graft rejection model, donor Th2/Tc2.R cells were indeed enriched in their capacity to prevent rejection; importantly, highly purified CD4+ Th2.R cells were also highly efficacious for preventing rejection. Rapamycin-generated Th2/Tc2 cells were less likely to die after adoptive transfer, accumulated in vivo at advanced proliferative cycles, and were present in 10-fold higher numbers than control Th2/Tc2 cells. Th2.R cells had a multifaceted, apoptosis-resistant phenotype, including: 1) reduced apoptosis after staurosporine addition, serum starvation, or CD3/CD28 costimulation; 2) reduced activation of caspases 3 and 9; and 3) increased anti-apoptotic Bcl-xL expression and reduced proapoptotic Bim and Bid expression. Using host-versus-graft reactivity as an immune correlate of graft rejection, we found that the in vivo efficacy of Th2/Tc2.R cells 1) did not require Th2/Tc2.R cell expression of IL-4, IL-10, perforin, or Fas ligand; 2) could not be reversed by IL-2, IL-7, or IL-15 posttransplant therapy; and 3) was intact after therapy with Th2.R cells relatively devoid of Foxp3 expression. We conclude that ex vivo rapamycin generates Th2 cells that are resistant to apoptosis, persist in vivo, and effectively prevent rejection by a mechanism that may be distinct from previously described graft-facilitating T cells.  相似文献   
992.
The homologue of the phosphoprotein PII phosphatase PphA from Thermosynechococcus elongatus, termed tPphA, was identified and its structure was resolved in two different space groups, C2221 and P41212, at a resolution of 1.28 and 3.05 Å, respectively. tPphA belongs to a large and widely distributed subfamily of Mg2+/Mn2+-dependent phosphatases of the PPM superfamily characterized by the lack of catalytic and regulatory domains. The core structure of tPphA shows a high degree of similarity to the two PPM structures identified so far. In contrast to human PP2C, but similar to Mycobacterium tuberculosis phosphatase PstP, the catalytic centre exhibits a third metal ion in addition to the dinuclear metal centre universally conserved in all PPM members. The fact that the third metal is only liganded by amino acids, which are universally conserved in all PPM members, implies that the third metal could be general for all members of this family. As a specific feature of tPphA, a flexible subdomain, previously recognized as a flap domain, could be revealed. Comparison of different structural isomers of tPphA as well as site-specific mutagenesis implied that the flap domain is involved in substrate binding and catalytic activity. The structural arrangement of the flap domain was accompanied by a large side-chain movement of an Arg residue (Arg169) at the basis of the flap. Mutation of this residue strongly impaired protein stability as well as catalytic activity, emphasizing the importance of this amino acid for the regional polysterism of the flap subdomain and confirming the assumption that flap domain flexibility is involved in catalysis.  相似文献   
993.
Rats treated with (±)-3,4-methylenedioxymethamphetamine (MDMA) or (+)-methamphetamine (MA) neonatally exhibit long-lasting learning impairments (i.e., after treatment on postnatal days (P)11–15 or P11–20). Although both drugs are substituted amphetamines, they each produce a unique profile of cognitive deficits (i.e., spatial vs. path integration learning and severity of deficits) which may be the result of differential early neurochemical changes. We previously showed that MA and MDMA increase corticosterone (CORT) and MDMA reduces levels of serotonin (5-HT) 24 h after treatment on P11, however, learning deficits are seen after 5 or 10 days of drug treatment, not just 1 day. Accordingly, in the present experiment, rats were treated with MA or MDMA starting on P11 for 5 or 10 days (P11–15 or P11–20) and tissues collected on P16, P21, or P30. Five-day MA administration dramatically increased CORT on P16, whereas MDMA did not. Both drugs decreased hippocampal 5-HT on P16 and P21, although MDMA produced larger reductions. Ten-day treatment with either drug increased dopamine utilization in the neostriatum on P21, whereas 5-day treatment had no effect. No CORT or brain 5-HT or dopamine changes were found with either drug on P30. Although the monoamine changes are transient, they may alter developing neural circuits sufficiently to permanently disrupt later learning and memory abilities.  相似文献   
994.
In a search for sweet taste receptor interacting proteins, we have identified the calcium- and integrin-binding protein 1 (CIB1) as specific binding partner of the intracellular carboxyterminal domain of the rat sweet taste receptor subunit Tas1r2. In heterologous human embryonic kidney 293 (HEK293) cells, the G protein chimeras Gα16gust44 and Gα15i3 link the sweet taste receptor dimer TAS1R2/TAS1R3 to an inositol 1,4,5-trisphosphate (InsP3)-dependent Ca2+ release pathway. To demonstrate the influence of CIB1 on the cytosolic Ca2+ concentration, we used sweet and umami compounds as well as other InsP3-generating ligands in FURA-2-based Ca2+ assays in wild-type HEK293 cells and HEK293 cells expressing functional human sweet and umami taste receptor dimers. Stable and transient depletion of CIB1 by short-hairpin RNA increased the Ca2+ response of HEK293 cells to the InsP3-generating ligands ATP, UTP and carbachol. Over-expression of CIB1 had the opposite effect as shown for the sweet ligand saccharin, the umami receptor ligand monosodium glutamate and UTP. The CIB1 effect was dependent on the thapsigargin-sensitive Ca2+ store of the endoplasmic reticulum (ER) and independent of extracellular Ca2+. The function of CIB1 on InsP3-evoked Ca2+ release from the ER is most likely mediated by its interaction with the InsP3 receptor. Thus, CIB1 seems to be an inhibitor of InsP3-dependent Ca2+ release in vivo .  相似文献   
995.
Capillary electrophoresis coupled with laser-induced fluorescence detection (CE-LIF) provides 15-s temporal resolution of amino acid levels in microdialysate, which, for the first time, allows almost real time measurement of changes during episodes of behavior. We trained Sprague-Dawley rats to self-administer either 10% ethanol-containing gelatin or non-alcoholic gelatin in a typical operant chamber. After rats reached stable daily levels of responding, microdialysis probes were inserted into nucleus accumbens and samples were collected before, during and after operant sessions with on-line analysis via CE-LIF. During the first 15 min of the operant session, there was a significant increase in taurine that correlated with the amount of ethanol consumed ( R = 0.81) but no change in rats responding for plain gel. There were large, consistent increases in glycine in both the ethanol and plain gel groups which correlated with the amount of gel consumed. A smaller increase was observed in rats with free non-operant access to plain gel compared to the increase seen with the same amount of gel consumed under operant conditions. When rats were given a time out after each delivery of gel in the operant protocol, the greatest increase of glycine was obtained with the longest time out period. Thus, increases in glycine in nucleus accumbens appear to be related to anticipation of reinforcement.  相似文献   
996.
997.
Virus-immune CD8(+) TCR repertoires specific for particular peptide-MHC class I complexes may be substantially shared between (public), or unique to, individuals (private). Because public TCRs can show reduced TdT-mediated N-region additions, we analyzed how TdT shapes the heavily public (to D(b)NP(366)) and essentially private (to D(b)PA(224)) CTL repertoires generated following influenza A virus infection of C57BL/6 (B6, H2(b)) mice. The D(b)NP(366)-specific CTL response was virtually clonal in TdT(-/-) B6 animals, with one of the three public clonotypes prominent in the wild-type (wt) response consistently dominating the TdT(-/-) set. Furthermore, this massive narrowing of TCR selection for D(b)NP(366) reduced the magnitude of D(b)NP(366)-specific CTL response in the virus-infected lung. Conversely, the D(b)PA(224)-specific responses remained comparable in both magnitude and TCR diversity within individual TdT(-/-) and wt mice. However, the extent of TCR diversity across the total population was significantly reduced, with the consequence that the normally private wt D(b)PA(224)-specific repertoire was now substantially public across the TdT(-/-) mouse population. The key finding is thus that the role of TdT in ensuring enhanced diversity and the selection of private TCR repertoires promotes optimal CD8(+) T cell immunity, both within individuals and across the species as a whole.  相似文献   
998.
In mammals, ceramide kinase (CerK)-mediated phosphorylation of ceramide is the only known pathway to ceramide-1-phosphate (C1P), a recently identified signaling sphingolipid metabolite. To help delineate the roles of CerK and C1P, we knocked out the gene of CerK in BALB/c mice by homologous recombination. All in vitro as well as cell-based assays indicated that CerK activity is completely abolished in Cerk-/- mice. Labeling with radioactive orthophosphate showed a profound reduction in the levels of de novo C1P formed in Cerk-/- macrophages. Consistently, mass spectrometry analysis revealed a major contribution of CerK to the formation of C16-C1P. However, the significant residual C1P levels in Cerk-/- animals indicate that alternative routes to C1P exist. Furthermore, serum levels of proapoptotic ceramide in these animals were significantly increased while levels of dihydroceramide as the biosynthetic precursor were reduced. Previous literature pointed to a role of CerK or C1P in innate immune cell function. Using a variety of mechanistic and disease models, as well as primary cells, we found that macrophage- and mast cell-dependent readouts are barely affected in the absence of CerK. However, the number of neutrophils was strikingly reduced in blood and spleen of Cerk-/- animals. When tested in a model of fulminant pneumonia, Cerk-/- animals developed a more severe disease, lending support to a defect in neutrophil homeostasis following CerK ablation. These results identify ceramide kinase as a key regulator of C1P, dihydroceramide and ceramide levels, with important implications for neutrophil homeostasis and innate immunity regulation.  相似文献   
999.
Mast cell stimulation by Ag is followed by the opening of Ca(2+)-activated K(+) channels, which participate in the orchestration of mast cell degranulation. The present study has been performed to explore the involvement of the Ca(2+)-activated K(+) channel K(Ca)3.1 in mast cell function. To this end mast cells have been isolated and cultured from the bone marrow (bone marrow-derived mast cells (BMMCs)) of K(Ca)3.1 knockout mice (K(Ca)3.1(-/-)) and their wild-type littermates (K(Ca)3.1(+/+)). Mast cell number as well as in vitro BMMC growth and CD117, CD34, and FcepsilonRI expression were similar in both genotypes, but regulatory cell volume decrease was impaired in K(Ca)3.1(-/-) BMMCs. Treatment of the cells with Ag, endothelin-1, or the Ca(2+) ionophore ionomycin was followed by stimulation of Ca(2+)-activated K(+) channels and cell membrane hyperpolarization in K(Ca)3.1(+/+), but not in K(Ca)3.1(-/-) BMMCs. Upon Ag stimulation, Ca(2+) entry but not Ca(2+) release from intracellular stores was markedly impaired in K(Ca)3.1(-/-) BMMCs. Similarly, Ca(2+) entry upon endothelin-1 stimulation was significantly reduced in K(Ca)3.1(-/-) cells. Ag-induced release of beta-hexosaminidase, an indicator of mast cell degranulation, was significantly smaller in K(Ca)3.1(-/-) BMMCs compared with K(Ca)3.1(+/+) BMMCs. Moreover, histamine release upon stimulation of BMMCs with endothelin-1 was reduced in K(Ca)3.1(-/-) cells. The in vivo Ag-induced decline in body temperature revealed that IgE-dependent anaphylaxis was again significantly (by approximately 50%) blunted in K(Ca)3.1(-/-) mice. In conclusion, K(Ca)3.1 is required for Ca(2+)-activated K(+) channel activity and Ca(2+)-dependent processes such as endothelin-1- or Ag-induced degranulation of mast cells, and may thus play a critical role in anaphylactic reactions.  相似文献   
1000.
Regulation of T cell homeostasis by the transmembrane adaptor protein SIT   总被引:1,自引:0,他引:1  
The transmembrane adaptor protein SIT is a negative regulator of TCR-mediated signaling. However, little is known about the functional role of SIT in mature T cells. In this study, we show that mice deficient for SIT display a decreased number of naive CD8(+) T cells and a progressive accumulation of memory-like (CD44(high)) CD8(+) T lymphocytes that resemble cells undergoing homeostatic proliferation. Indeed, when transferred into lymphopenic hosts, SIT(-/-) naive CD8(+) T cells undergo enhanced homeostatic proliferation and express a higher level of CD44 in comparison to wild-type T cells. By using class-I-restricted TCR transgenic models with different ligand affinity/avidity, we show that lymphopenia-induced homeostatic proliferation is more pronounced in cells carrying low-affinity TCRs. Strikingly, the loss of SIT induces homeostatic proliferation of HY TCR transgenic cells, which are normally unable to proliferate in lymphopenic mice. Collectively, these data demonstrate that SIT negatively regulates T cell homeostasis. Finally, we show that SIT-deficient T cells develop a mechanism analogous to sensory adaptation as they up-regulate CD5, down-regulate the coreceptor, and display impaired TCR-mediated ZAP-70 activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号