首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7369篇
  免费   1041篇
  2023年   39篇
  2022年   22篇
  2021年   174篇
  2020年   107篇
  2019年   141篇
  2018年   157篇
  2017年   120篇
  2016年   230篇
  2015年   374篇
  2014年   427篇
  2013年   462篇
  2012年   662篇
  2011年   646篇
  2010年   434篇
  2009年   356篇
  2008年   454篇
  2007年   504篇
  2006年   508篇
  2005年   521篇
  2004年   463篇
  2003年   377篇
  2002年   411篇
  2001年   52篇
  2000年   33篇
  1999年   66篇
  1998年   73篇
  1997年   50篇
  1996年   45篇
  1995年   41篇
  1994年   40篇
  1993年   40篇
  1992年   44篇
  1991年   22篇
  1990年   24篇
  1989年   25篇
  1988年   17篇
  1987年   27篇
  1986年   24篇
  1985年   18篇
  1984年   18篇
  1983年   11篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   15篇
  1978年   12篇
  1977年   9篇
  1976年   11篇
  1975年   8篇
  1974年   9篇
排序方式: 共有8410条查询结果,搜索用时 218 毫秒
111.
IMP preferring cytosolic 5 ′-nucleotidase II (cN-II) is a widespread enzyme whose amino acid sequence is highly conserved among vertebrates. Fluctuations of its activity have been reported in some pathological conditions and its mRNA levels have been proposed as a prognostic factor for poor outcome in patients with adult acute myeloid leukemia. As a member of the oxypurine cycle, cN-II is involved in the regulation of intracellular concentration of 5′-inosine monophosphate (IMP), 5′-guanosine monophosphate (GMP), and also 5-phosphoribose 1-pyrophosphate (PRPP) and is therefore involved in the regulation of purine and pyrimidine de novo and salvage synthesis. In addition, several studies demonstrated the involvement of cN-II in pro-drug metabolism. Notwithstanding some publications indicating that cN-II is essential for the survival of several cell types, its role in cell metabolism remains uncertain. To address this issue, we built two eucaryotic cellular models characterized by different cN-II expression levels: a constitutive cN-II knockdown in the astrocytoma cell line (ADF) by short hairpin RNA (shRNA) strategy and a cN-II expression in the diploid strain RS112 of Saccharomyces cerevisiae. Preliminary results suggest that cN-II is essential for cell viability, probably because it is directly involved in the regulation of nucleotide pools. These two experimental approaches could be very useful for the design of a personalized chemotherapy.  相似文献   
112.
Metastatic renal cell carcinoma (RCC) is one of the most treatment-resistant malignancies, and patients have a dismal prognosis, with a <10% five-year survival rate. The identification of markers that can predict the potential for metastases will have a great effect in improving patient outcomes. In this study, we used differential proteomics with isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS analysis to identify proteins that are differentially expressed in metastatic and primary RCC. We identified 1256 non-redundant proteins, and 456 of these were quantified. Further analysis identified 29 proteins that were differentially expressed (12 overexpressed and 17 underexpressed) in metastatic and primary RCC. Dysregulated protein expressions of profilin-1 (Pfn1), 14–3-3 zeta/delta (14–3-3ζ), and galectin-1 (Gal-1) were verified on two independent sets of tissues by means of Western blot and immunohistochemical analysis. Hierarchical clustering analysis showed that the protein expression profile specific for metastatic RCC can distinguish between aggressive and non-aggressive RCC. Pathway analysis showed that dysregulated proteins are involved in cellular processes related to tumor progression and metastasis. Furthermore, preliminary analysis using a small set of tumors showed that increased expression of Pfn1 is associated with poor outcome and is a potential prognostic marker in RCC. In addition, 14–3-3ζ and Gal-1 also showed higher expression in tumors with poor prognosis than in those with good prognosis. Dysregulated proteins in metastatic RCC represent potential prognostic markers for kidney cancer patients, and a greater understanding of their involved biological pathways can serve as the foundation of the development of novel targeted therapies for metastatic RCC.Renal cell carcinoma (RCC)1 is the most common neoplasm of the adult kidney. Worldwide incidence and mortality rates of RCC are rising each decade (1). Seventy-five percent of kidney tumors are of the clear cell (ccRCC) subtype (2). Although modern imaging techniques for abdominal screening have led to increased incidental detection of renal tumors (3), unfortunately ∼25% to 30% of patients still have metastases at presentation.The prognosis with RCC is quite variable. The greatest risk of recurrence following nephrectomy is within the first 3 to 5 years (4). The ability to predict which tumors will metastasize would have a significant effect on patient outcomes, because the likelihood of a favorable response to treatment is greater when the metastatic burden is limited, and surgical resection of a single or limited number of metastases can result in longer survival (5). Furthermore, ∼3% of patients will develop a second primary renal tumor, either synchronous or metachronous. Currently, patient prognosis is assessed based on histological parameters and a multivariate analysis developed at Memorial Sloan Kettering (6), but neither is sufficiently accurate. A more accurate assessment of prognosis is urgently needed to better guide patient management.Although surgery can be curative for localized disease, many patients eventually relapse. Metastatic RCC is one of the most treatment-resistant malignancies, with chemotherapy and radiotherapy having limited effect. The five-year survival rate for metastatic RCC is ≤10% (7). Although there has been much progress in RCC treatment with the new era of antiangiogenic therapy, the majority of patients ultimately suffer a relapse and die from progression of the cancer. A more in-depth understanding of the pathogenesis of metastasis will be a cornerstone in the development of new targeted therapies. A number of prognostic markers have previously been identified based on comparative analysis of primary and metastatic tumors, including C-reactive protein, tetraspanin 7, hypoxia-inducible factor 1 α, phos-S6, U3 small nucleolar ribonucleoprotein protein, carbonic anhydrase IX, and microvascular density (814). However, no biomarker has yet had an established clinical role independent of stage (15). Differential protein expression between primary RCC and normal tissues was previously studied (1618). Also, differential expression between primary and metastatic kidney disease has been investigated at the microRNA level (19, 20). Molecular analyses hold the promise of providing a better understanding of the pathogenesis of kidney cancer (21).In this study, we aimed to elucidate the pathogenesis of RCC metastasis through proteomic analysis and to identify potential prognostic markers for kidney cancer. We performed quantitative proteomic analysis using isobaric tags for relative and absolute quantitation (iTRAQ) labeling and LC-MS/MS to identify proteins that were dysregulated in metastatic RCC relative to primary RCC. Differential expressions of selected biologically interesting proteins—profilin-1 (Pfn1), 14–3-3 zeta/delta (14–3-3ζ), and galectin-1 (Gal-1)—were validated on two independent sets of tumors by means of western blot (WB) analysis and immunohistochemistry (IHC). Hierarchical clustering analysis showed that differential protein expression can distinguish between aggressive and non-aggressive tumors. In order to explore the role of these dysregulated proteins in tumor progression, we performed Gene Ontology (GO) and pathway analyses. In addition, we carried out a preliminary analysis to assess the potential of Pfn1, 14–3-3ζ, and Gal-1 as prognostic markers in RCC.  相似文献   
113.
SAS-6 is required for centriole biogenesis in diverse eukaryotes. Here, we describe a novel family of SAS-6-like (SAS6L) proteins that share an N-terminal domain with SAS-6 but lack coiled-coil tails. SAS6L proteins are found in a subset of eukaryotes that contain SAS-6, including diverse protozoa and green algae. In the apicomplexan parasite Toxoplasma gondii, SAS-6 localizes to the centriole but SAS6L is found above the conoid, an enigmatic tubulin-containing structure found at the apex of a subset of alveolate organisms. Loss of SAS6L causes reduced fitness in Toxoplasma. The Trypanosoma brucei homolog of SAS6L localizes to the basal-plate region, the site in the axoneme where the central-pair microtubules are nucleated. When endogenous SAS6L is overexpressed in Toxoplasma tachyzoites or Trypanosoma trypomastigotes, it forms prominent filaments that extend through the cell cytoplasm, indicating that it retains a capacity to form higher-order structures despite lacking a coiled-coil domain. We conclude that although SAS6L proteins share a conserved domain with SAS-6, they are a functionally distinct family that predates the last common ancestor of eukaryotes. Moreover, the distinct localization of the SAS6L protein in Trypanosoma and Toxoplasma adds weight to the hypothesis that the conoid complex evolved from flagellar components.  相似文献   
114.
Pine species have become invasive throughout the globe and threaten to replace native biota. The threat of pine invasion is particularly pressing in parts of the tropics where there are no native pines. The factors that govern pine invasion are not often well understood. However, key to pine survival is an obligate and mutualistic interaction with ectomycorrhizal fungi. Thus for pines to successfully invade new habitats compatible ectomycorrhizal fungi must already be present, or be co-introduced. The purpose of this study was to examine the community structure of non-native ectomycorrhizal fungi associated with pine invasions in the Hawaiian Islands. To accomplish this we executed a field and greenhouse study and used a molecular ecology approach to identify the fungi associating with invasive pines in Hawai‘i. We show that: (1) ectomycorrhizal fungal species richness in non-native pine plantations is far less than what is found in pine’s native range, (2) there was a significant decrease in average ectomycorrhizal fungal species richness as distance from pine plantations increased and, (3) Suillus species were the dominant fungi colonizing pines outside plantations. The keystone ectomycorrhizal fungal taxa responsible for pine establishment in Hawai‘i are within genera commonly associated with pine invasions throughout the globe. We surmise that these fungi share functional traits such as the ability for long-distance dispersal from plantations and host tree colonization via spore that lead to their success when introduced to new habitats.  相似文献   
115.
Reproductive strategy can play a significant role in invasion success and spread. Asexual and sexual reproduction may confer different advantages and disadvantages to a founding population, resulting in varying impacts on genetic diversity and the ability to invade. We investigate the role of reproductive mode in two species of non-native hydromedusae (Maeotias marginata and Moerisia sp.) in the San Francisco Estuary (SFE). Both species can reproduce asexually and sexually. We employed 7?C8 microsatellite markers to determine overall genetic diversity and to investigate contributions of asexual and sexual reproduction to the populations. We found both species had high levels of genetic diversity (Average HE?=?0.63 and 0.58, Number individuals sampled?=?111 and 277, for M. marginata and Moerisia sp. respectively) but also detected multiple individuals in clonal lineages. We identified the same clones across sampling locations and time, and the index of asexual reproduction (R) was 0.89 for M. marginata and 0.91 for Moerisia sp. Our results suggest both species maintain high population genetic diversity through sexual reproduction, in combination with asexual reproduction, which allows rapid propagation. In addition, we conducted genetic sequence analyses at the ribosomal ITS1 marker, using samples of Moerisia sp. from the SFE and M. lyonsi from Chesapeake Bay. We found 100?% sequence similarity showing that Moerisia sp. in the SFE and Chesapeake Bay are the same species. The two hydromedusae studied here possess the means to propagate rapidly and have high genetic diversity, both of which may allow them to successfully adapt to changing environments and expand their invasions.  相似文献   
116.
The voltage‐gated potassium channel KV7.1 is regulated by non‐pore forming regulatory KCNE β‐subunits. Together with KCNE1, it forms the slowly activating delayed rectifier potassium current IKs. However, where the subunits assemble and which of the subunits determines localization of the IKs‐complex has not been unequivocally resolved yet. We employed trafficking‐deficient KV7.1 and KCNE1 mutants to investigate IKs trafficking using the polarized Madin‐Darby Canine Kidney cell line. We find that the assembly happens early in the secretory pathway but provide three lines of evidence that it takes place in a post‐endoplasmic reticulum compartment. We demonstrate that KV7.1 targets the IKs‐complex to the basolateral membrane, but that KCNE1 can redirect the complex to the apical membrane upon mutation of critical KV7.1 basolateral targeting signals. Our data provide a possible explanation to the fact that KV7.1 can be localized apically or basolaterally in different epithelial tissues and offer a solution to divergent literature results regarding the effect of KCNE subunits on the subcellular localization of KV7.1/KCNE complexes .  相似文献   
117.
This article explores commercial, academic, and national initiatives aimed at using sequencing technologies to generate “actionable” genomic results that can be applied to the clinical management of oncology patients. We argue that the term “actionable” is not merely a buzzword, but signals the emergence of a distinctive sociotechnical regime of genomic medicine in oncology. Unlike other regimes of genomic medicine that are organized around assessing and managing inherited risk for developing cancer (e.g. BRCA testing), actionable regimes aim to generate predictive relationships between genetic information and drug therapies, thereby generating new kinds of clinical actions. We explore how these genomic results are made actionable by articulating them with existing clinical routines, clinical trials, regulatory regimes, and health care systems; and in turn, how clinical sequencing programs have begun to reconfigure knowledge and practices in oncology. Actionability regimes confirm the emergence of bio-clinical decision-making in oncology, whereby the articulation of molecular hypotheses and experimental therapeutics become central to patient care.  相似文献   
118.
119.
120.
Dietary modification such as caloric restriction (CR) has been shown to decrease tumor initiation and progression. We sought to determine if nutrient restriction could be used as a novel therapeutic intervention to enhance cytotoxic therapies such as radiation (IR) and alter the molecular profile of triple-negative breast cancer (TNBC), which displays a poor prognosis. In two murine models of TNBC, significant tumor regression is noted with IR or diet modification, and a greater regression is observed combining diet modification with IR. Two methods of diet modification were compared, and it was found that a daily 30% reduction in total calories provided more significant tumor regression than alternate day feeding. At the molecular level, tumors treated with CR and IR showed less proliferation and more apoptosis. cDNA array analysis demonstrated the IGF-1R pathway plays a key role in achieving this physiologic response, and multiple members of the IGF-1R pathway including IGF-1R, IRS, PIK3ca and mTOR were found to be downregulated. The innovative use of CR as a novel therapeutic option has the potential to change the biology of tumors and enhance the opportunity for clinical benefit in the treatment of patients with TNBC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号