首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1744篇
  免费   173篇
  2023年   11篇
  2022年   10篇
  2021年   39篇
  2020年   25篇
  2019年   41篇
  2018年   32篇
  2017年   31篇
  2016年   50篇
  2015年   83篇
  2014年   93篇
  2013年   107篇
  2012年   153篇
  2011年   155篇
  2010年   92篇
  2009年   70篇
  2008年   122篇
  2007年   102篇
  2006年   104篇
  2005年   74篇
  2004年   67篇
  2003年   82篇
  2002年   61篇
  2001年   40篇
  2000年   16篇
  1999年   17篇
  1998年   21篇
  1997年   15篇
  1996年   16篇
  1995年   7篇
  1994年   3篇
  1993年   14篇
  1992年   9篇
  1991年   13篇
  1990年   10篇
  1989年   13篇
  1988年   19篇
  1987年   12篇
  1986年   4篇
  1985年   13篇
  1984年   10篇
  1983年   5篇
  1982年   5篇
  1980年   5篇
  1979年   4篇
  1978年   4篇
  1974年   3篇
  1973年   4篇
  1972年   5篇
  1971年   4篇
  1968年   7篇
排序方式: 共有1917条查询结果,搜索用时 218 毫秒
31.
Overbeeke  Nico  Haring  Michel A.  John  H.  Nijkamp  J.  Kool  Ad. J. 《Plant molecular biology》1984,3(4):235-241
Summary Sequences from Petunia hybrida chloroplast DNA which have the property to promote autonomous replication in Saccharomyces cerevisiae were cloned in vector YIp5. Seven cloned chloroplast DNA fragments are localized at one of two different sites on the chloroplast genome. One site, arsA was mapped on a 1.8 Kb fragment at position 27.0–28.8 Kb on the P. hybrida chloroplast genome. The plasmids containing this arsA are stable both in yeast and E. coli. The other site, arsB, was shown to be very unstable and is located either in the small single copy region close to the inverted repeat or just in the inverted repeat. The functioning of these sequences as a possible origin of replication in vivo is discussed.  相似文献   
32.
Summary Urinary bladders ofBufo marinus were depolarized, by raising the serosal K concentration, to facilitate voltage-clamping of the apical membrane. Passive Na transport across the apical membrane was then studied with near-instantaneous current-voltage curves obtained before and after eliciting a natriferic response with oxytocin. Fitting with the constant-field equation showed that the natriferic effect is accounted for by an increase in the apical Na permeability. It is accompanied by a small increase in cellular Na activity. Furthermore, fluctuation analysis of the amiloride-induced shot-noise component of the short-circuit current indicated that the permeability increase is not due to increased Na translocation through those Na channels which were already conducting prior to hormonal stimulation. Rather, the natriferic effects is found to be based on an increase in the population of transporting channels. It appears that, in response to the hormone, Na channels are rapidly recruited from a pool of electrically silent channels.  相似文献   
33.
Action potential-driven current transients were recorded from sensory cilia and used to monitor the spike frequency generated by olfactory receptor neurons, which were maintained in their natural position in the sensory epithelium. Both basal and messenger-induced activities, as elicited with forskolin or cyclic nucleotides, were dependent on the presence of mucosal Na+. The spike rate decreased to approximately 20% when mucosal Na+ was lowered from 120 to 60 mM (replaced by N-methyl-D-glucamine+), without clear changes in amplitude and duration of the recorded action potential-driven transients. Mucosal Ca2+ and Mg2+ blocked spike discharge completely when increased from 1 to 10 mM in Ringer solution. Lowering mucosal Ca2+ below 1 mM increased the spike rate. These results can be explained by the presence of a cyclic nucleotide-dependent, Ca(2+)-sensitive cation conductance, which allows a depolarizing Na+ inward current to flow through the apical membrane of in situ receptor cells. A conductance with these properties, thought to provide the receptor current, was first described for isolated olfactory cells by Nakamura and Gold (1987. Nature (Lond.). 325:442-444). The forskolin-stimulated spike rate decreased when l-cis-diltiazem, a known blocker of the cyclic nucleotide-dependent receptor current, was added to the mucosal solution. Spike rate also decreased when the mucosal K+ concentration was lowered. Mucosal Ba2+ and 4-aminopyridine, presumably by means of cell depolarization, rapidly increased the spike rate. This suggests the presence of apical K+ channels that render the receptor cells sensitive to the K+ concentration of the olfactory mucus. With a slower time course, mucosal Ba2+ and 4-aminopyridine decreased the amplitude and caused rectification of the fast current transients (prolongation of action potentials). Abolishment of the apical Na+ current (by removal of mucosal Na+), as indicated by a strong decrease in spike rate, could be counteracted by adding 10 mM Ba2+ or 1 mM 4-aminopyridine to the mucosal solution, which re-established spiking. Similarly, blockage of the apical cation conductance with 10 mM Ca could be counteracted by adding 10 mM Ba2+ or by raising the mucosal K+ concentration. Thus mucosal concentrations of Na+, K+, and Ca2+ will jointly affect the sensitivity of odor detection.  相似文献   
34.
35.
In the attempt to know the factors influencing the vasculogenesis and to verify whether the vessel formation and growth are influenced, during different ontogenetic periods, by oxygen deficiency, the intraneural vascular network has been morphometrically analyzed in chicken embryo optic tectum under conditions of aerogenic hypoxia. Chicken eggs, incubated under routine conditions, have been half-painted with melted wax at the 2nd incubation day (i.d.). Fragments of optic tectum, isolated from living embryos at the 8th, 14th and 17th i.d., have been fixed and embedded according to the usual E/M procedures. A parallel series of normally developed embryos of 8, 14 and 17 incubation days has been likewise prepared. On semithin sections from the hypoxic specimens and normal control embryos the area occupied by vessels (Av), the number of vessels (Nv) and the diameter of the radially directed ones (Dv) have been evaluated. The preliminary results indicate that hypoxia evokes, from the 8th to the 17th i.d., an increment of the Av parameter, due first to microvessel neoformation and enlargement from the 8th to the 14th i.d., then from the 14th to the 17th i.d. only to a growth of new capillary branches. The response of the vascular network to the hypoxic condition is more marked from the 8th to the 14th i.d., t.i. when, in relation to the differentiation and the stratification of the neurons, the metabolic requirements of the developing tectum are presumably increased. O2 deficiency causes severe developmental disorders of the cyto- and mieloarchitecture of the tectum: the vascular response can apparently prevent actual damages only when the hypoxic condition lasts for a relatively short time.  相似文献   
36.
Sexual conflicts often arise between mating partners because each sex tries to maximize its own reproductive success. One major male strategy to influence a partner's resource allocation is the transfer of accessory gland proteins. This has been shown to occur in simultaneous hermaphrodites as well as in organisms with separate sexes. Although accessory gland proteins affect the investment of resources in both male and female function, we here specifically focus on female investment. In the great pond snail, Lymnaea stagnalis, previous studies found that the accessory gland protein ovipostatin reduced female fecundity by suppressing egg laying in the partner in the short term (days). To investigate whether this reduction in egg laying is a commonly found effect of mating in freshwater snails, we compared egg output for evidence of suppression in isolated and paired snails of eight pulmonate species. Furthermore, we determined whether the suppression of egg laying caused a shift in resource allocation to the eggs. We found that in five of the eight species egg laying was suppressed, with fewer and lighter egg masses being laid when they had access to a mating partner. In mated pairs of L. stagnalis and Biomphalaria alexandrina, allocation of resources to the eggs was altered in opposite ways: individuals of L. stagnalis laid fewer but larger and heavier eggs; individuals of B. alexandrina laid smaller and lighter eggs, with no change in egg numbers. Such changes in the female function are most likely the result of combined effects of receiving accessory gland proteins, and the cost of mating in both male and female roles. Thus, effects of the maternal environment, including the receipt of accessory gland proteins, on offspring investment are not restricted to species with separate sexes.  相似文献   
37.
Plant diversity has a strong impact on a plethora of ecosystem functions and services, especially ecosystem carbon (C) storage. However, the potential context-dependency of biodiversity effects across ecosystem types, environmental conditions and carbon pools remains largely unknown. In this study, we performed a meta-analysis by collecting data from 95 biodiversity-ecosystem functioning (BEF) studies across 60 sites to explore the effects of plant diversity on different C pools, including aboveground and belowground plant biomass, soil microbial biomass C and soil C content across different ecosystem types. The results showed that ecosystem C storage was significantly enhanced by plant diversity, with stronger effects on aboveground biomass than on soil C content. Moreover, the response magnitudes of ecosystem C storage increased with the level of species richness and experimental duration across all ecosystems. The effects of plant diversity were more pronounced in grasslands than in forests. Furthermore, the effects of plant diversity on belowground plant biomass increased with aridity index in grasslands and forests, suggesting that climate change might modulate biodiversity effects, which are stronger under wetter conditions but weaker under more arid conditions. Taken together, these results provide novel insights into the important role of plant diversity in ecosystem C storage across critical C pools, ecosystem types and environmental contexts.  相似文献   
38.
39.

Deforestation, plantation expansion and other human activities in tropical ecosystems are often associated with biological invasions. These processes have been studied for above-ground organisms, but associated changes below the ground have received little attention. We surveyed rainforest and plantation systems in Jambi province, Sumatra, Indonesia, to investigate effects of land-use change on the diversity and abundance of earthworms—a major group of soil-ecosystem engineers that often is associated with human activities. Density and biomass of earthworms increased 4—30-fold in oil palm and rubber monoculture plantations compared to rainforest. Despite much higher abundance, earthworm communities in plantations were less diverse and dominated by the peregrine morphospecies Pontoscolex corethrurus, often recorded as invasive. Considering the high deforestation rate in Indonesia, invasive earthworms are expected to dominate soil communities across the region in the near future, in lieu of native soil biodiversity. Ecologically-friendly management approaches, increasing structural habitat complexity and plant diversity, may foster beneficial effects of invasive earthworms on plant growth while mitigating negative effects on below-ground biodiversity and the functioning of the native soil animal community.

  相似文献   
40.
Although nitrogen (N) deposition is increasing globally, N availability still limits many organisms, such as microorganisms and mesofauna. However, little is known to which extent soil organisms rely on mineral‐derived N and whether plant community composition modifies its incorporation into soil food webs. More diverse plant communities more effectively compete with microorganisms for mineral N likely reducing the incorporation of mineral‐derived N into soil food webs. We set up a field experiment in experimental grasslands with different levels of plant species and functional group richness. We labeled soil with 15NH4 15NO3 and analyzed the incorporation of mineral‐derived 15N into soil microorganisms and mesofauna over 3 months. Mineral‐derived N incorporation decreased over time in all investigated organisms. Plant species richness and presence of legumes reduced the uptake of mineral‐derived N into microorganisms. In parallel, the incorporation of mineral‐derived 15N into mesofauna species declined with time and decreased with increasing plant species richness in the secondary decomposer springtail Ceratophysella sp. Effects of both plant species richness and functional group richness on other mesofauna species varied with time. The presence of grasses increased the 15N incorporation into Ceratophysella sp., but decreased it in the primary decomposer oribatid mite Tectocepheus velatus sarekensis. The results highlight that mineral N is quickly channeled into soil animal food webs via microorganisms irrespective of plant diversity. The amount of mineral‐derived N incorporated into soil animals, and the plant community properties affecting this incorporation, differed markedly between soil animal taxa, reflecting species‐specific use of food resources. Our results highlight that plant diversity and community composition alter the competition for N in soil and change the transfer of N across trophic levels in soil food webs, potentially leading to changes in soil animal population dynamics and community composition. Sustaining high plant diversity may buffer detrimental effects of elevated N deposition on soil biota.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号