首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1364篇
  免费   177篇
  2021年   14篇
  2020年   11篇
  2019年   8篇
  2018年   7篇
  2017年   14篇
  2016年   18篇
  2015年   29篇
  2014年   36篇
  2013年   59篇
  2012年   70篇
  2011年   67篇
  2010年   49篇
  2009年   51篇
  2008年   62篇
  2007年   60篇
  2006年   60篇
  2005年   51篇
  2004年   57篇
  2003年   46篇
  2002年   52篇
  2001年   53篇
  2000年   68篇
  1999年   44篇
  1998年   20篇
  1997年   19篇
  1996年   19篇
  1995年   11篇
  1994年   21篇
  1993年   31篇
  1992年   26篇
  1991年   26篇
  1990年   26篇
  1989年   23篇
  1988年   23篇
  1987年   25篇
  1986年   19篇
  1985年   13篇
  1984年   16篇
  1983年   12篇
  1982年   7篇
  1980年   8篇
  1979年   14篇
  1978年   9篇
  1976年   9篇
  1974年   10篇
  1973年   8篇
  1972年   13篇
  1970年   8篇
  1969年   7篇
  1967年   7篇
排序方式: 共有1541条查询结果,搜索用时 109 毫秒
991.
992.
Delta-atracotoxins (delta-ACTXs) from Australian funnel-web spiders differ structurally from scorpion alpha-toxins (Sc(alpha)Tx) but similarly slow sodium current inactivation and compete for their binding to sodium channels at receptor site-3. Characterization of the binding of 125I-labelled delta-ACTX-Hv1a to various sodium channels reveals a decrease in affinity for depolarized (0 mV; Kd=6.5 +/- 1.4 nm) vs.polarized (-55 mV; Kd=0.6 +/- 0.2 nm) rat brain synaptosomes. The increased Kd under depolarized conditions correlates with a 4.3-fold reduction in the association rate and a 1.8-increase in the dissociation rate. In comparison, Sc(alpha)Tx binding affinity decreased 33-fold under depolarized conditions due to a 48-fold reduction in the association rate. The binding of 125I-labelled delta-ACTX-Hv1a to rat brain synaptosomes is inhibited competitively by classical Sc(alpha)Txs and allosterically by brevetoxin-1, similar to Sc(alpha)Tx binding. However, in contrast with classical Sc(alpha)Txs, 125I-labelled delta-ACTX-Hv1a binds with high affinity to cockroach Na+ channels (Kd=0.42 +/- 0.1 nm) and is displaced by the Sc(alpha)Tx, Lqh(alpha)IT, a well-defined ligand of insect sodium channel receptor site-3. However, delta-ACTX-Hv1a exhibits a surprisingly low binding affinity to locust sodium channels. Thus, unlike Sc(alpha)Txs, which are capable of differentiating between mammalian and insect sodium channels, delta-ACTXs differentiate between various insect sodium channels but bind with similar high affinity to rat brain and cockroach channels. Structural comparison of delta-ACTX-Hv1a to Sc(alpha)Txs suggests a similar putative bioactive surface but a 'slimmer' overall shape of the spider toxin. A slimmer shape may ease the interaction with the cockroach and mammalian receptor site-3 and facilitate its association with different conformations of the rat brain receptor, correlated with closed/open and slow-inactivated channel states.  相似文献   
993.
994.

Background  

Two-hybrid screening for proteins that interact with the core domain of human topoisomerase I identified two novel proteins, BTBD1 and BTBD2, which share 80% amino acid identities.  相似文献   
995.
Particle bombardment and the genetic enhancement of crops: myths and realities   总被引:14,自引:0,他引:14  
DNA transfer by particle bombardment makes use of physical processes to achieve the transformation of crop plants. There is no dependence on bacteria, so the limitations inherent in organisms such as Agrobacterium tumefaciens do not apply. The absence of biological constraints, at least until DNA has entered the plant cell, means that particle bombardment is a versatile and effective transformation method, not limited by cell type, species or genotype. There are no intrinsic vector requirements so transgenes of any size and arrangement can be introduced, and multiple gene cotransformation is straightforward. The perceived disadvantages of particle bombardment compared to Agrobacterium-mediated transformation, i.e. the tendency to generate large transgene arrays containing rearranged and broken transgene copies, are not borne out by the recent detailed structural analysis of transgene loci produced by each of the methods. There is also little evidence for major differences in the levels of transgene instability and silencing when these transformation methods are compared in agriculturally important cereals and legumes, and other non-model systems. Indeed, a major advantage of particle bombardment is that the delivered DNA can be manipulated to influence the quality and structure of the resultant transgene loci. This has been demonstrated in recently reported strategies that favor the recovery of transgenic plants containing intact, single-copy integration events, and demonstrating high-level transgene expression. At the current time, particle bombardment is the most efficient way to achieve plastid transformation in plants and is the only method so far used to achieve mitochondrial transformation. In this review, we discuss recent data highlighting the positive impact of particle bombardment on the genetic transformation of plants, focusing on the fate of exogenous DNA, its organization and its expression in the plant cell. We also discuss some of the most important applications of this technology including the deployment of transgenic plants under field conditions.  相似文献   
996.
A highly enriched halophilic culture was established with benzene as the sole carbon source by using a brine soil obtained from an oil production facility in Oklahoma. The enrichment completely degraded benzene, toluene, ethylbenzene, and xylenes within 1 to 2 weeks. Also, [14C]benzene was converted to 14CO2, suggesting the culture's ability to mineralize benzene. Community structure analysis revealed that Marinobacter spp. were the dominant members of the enrichment.  相似文献   
997.
Bacillus subtilis is capable of producing 2,3-butanediol from acetoin by fermentation, but to date, the gene encoding the enzyme responsible, acetoin reductase/2,3-butanediol dehydrogenase (AR/BDH), has remained unknown. A search of the B. subtilis genome database with the amino acid sequences of functional AR/BDHs from Saccharomyces cerevisiae and Bacillus cereus resulted in the identification of a highly similar protein encoded by the B. subtilis ydjL gene. A knockout strain carrying a ydjL::cat insertion mutation was constructed, which (i) abolished 2,3-butanediol production in early stationary phase, (ii) produced no detectable AR or BDH activity in vitro, and (iii) accumulated the precursor acetoin in early stationary phase. The ydjL::cat mutation also affected the kinetics of lactate but not acetate production during stationary-phase cultivation with glucose under oxygen limitation. A very small amount of 2,3-butanediol was detected in very-late-stationary-phase (96-hour) cultures of the ydjL::cat mutant, suggesting the existence of a second gene encoding a minor AR activity. From the data, it is proposed that the major AR/BDH-encoding gene ydjL be renamed bdhA.  相似文献   
998.
Most planetary protection research has concentrated on characterizing viable bioloads on spacecraft surfaces, developing techniques for bioload reduction prior to launch, and studying the effects of simulated martian environments on microbial survival. Little research has examined the persistence of biogenic signature molecules on spacecraft materials under simulated martian surface conditions. This study examined how endogenous adenosine-5′-triphosphate (ATP) would persist on aluminum coupons under simulated martian conditions of 7.1 mbar, full-spectrum simulated martian radiation calibrated to 4 W m−2 of UV-C (200 to 280 nm), −10°C, and a Mars gas mix of CO2 (95.54%), N2 (2.7%), Ar (1.6%), O2 (0.13%), and H2O (0.03%). Cell or spore viabilities of Acinetobacter radioresistens, Bacillus pumilus, and B. subtilis were measured in minutes to hours, while high levels of endogenous ATP were recovered after exposures of up to 21 days. The dominant factor responsible for temporal reductions in viability and loss of ATP was the simulated Mars surface radiation; low pressure, low temperature, and the Mars gas composition exhibited only slight effects. The normal burst of endogenous ATP detected during spore germination in B. pumilus and B. subtilis was reduced by 1 or 2 orders of magnitude following, respectively, 8- or 30-min exposures to simulated martian conditions. The results support the conclusion that endogenous ATP will persist for time periods that are likely to extend beyond the nominal lengths of most surface missions on Mars, and planetary protection protocols prior to launch may require additional rigor to further reduce the presence and abundance of biosignature molecules on spacecraft surfaces.  相似文献   
999.
The role of DNA repair by nonhomologous end joining (NHEJ), homologous recombination, spore photoproduct lyase, and DNA polymerase I and genome protection via α/β-type small, acid-soluble spore proteins (SASP) in Bacillus subtilis spore resistance to accelerated heavy ions (high-energy charged [HZE] particles) and X rays has been studied. Spores deficient in NHEJ and α/β-type SASP were significantly more sensitive to HZE particle bombardment and X-ray irradiation than were the recA, polA, and splB mutant and wild-type spores, indicating that NHEJ provides an efficient DNA double-strand break repair pathway during spore germination and that the loss of the α/β-type SASP leads to a significant radiosensitivity to ionizing radiation, suggesting the essential function of these spore proteins as protectants of spore DNA against ionizing radiation.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号