首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11480篇
  免费   1049篇
  国内免费   5篇
  2023年   60篇
  2022年   52篇
  2021年   337篇
  2020年   166篇
  2019年   235篇
  2018年   277篇
  2017年   244篇
  2016年   349篇
  2015年   642篇
  2014年   642篇
  2013年   742篇
  2012年   976篇
  2011年   954篇
  2010年   584篇
  2009年   530篇
  2008年   701篇
  2007年   653篇
  2006年   563篇
  2005年   529篇
  2004年   517篇
  2003年   529篇
  2002年   456篇
  2001年   88篇
  2000年   62篇
  1999年   98篇
  1998年   123篇
  1997年   68篇
  1996年   70篇
  1995年   71篇
  1994年   59篇
  1993年   58篇
  1992年   62篇
  1991年   64篇
  1990年   48篇
  1989年   46篇
  1988年   39篇
  1987年   36篇
  1986年   42篇
  1985年   67篇
  1984年   49篇
  1983年   56篇
  1982年   46篇
  1981年   45篇
  1980年   39篇
  1979年   37篇
  1978年   39篇
  1977年   38篇
  1975年   32篇
  1974年   38篇
  1973年   30篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
31.
Evidence is presented that although many proteins from the fronds of Lemna minor L. undergo enhanced degradation during osmotic stress, ribulose-1,5-bisphosphate carboxylase (RuBPCase) is not degraded. Instead RuBPCase is converted in a series of steps to a very high-molecular-weight form. The first step involves the induction of an oxidase system which after 24 h of stress converts RuBPCase to an acidic and catalytically inactive form. Subsequently, the oxidised RuBPCase protein is gradually polymerized to a number of very large aggregates (molecular weight of several million).The conversion of RuBPCase to a high-molecular-weight form appears to be correlated with (i) a reduction in the number of-SH residues and (ii) the susceptibility to in-vitro proteolysis. Indeed, the number of-SH groups per RuBPCase molecule decreases from 89 in the native enzyme to 54 and 22 in the oxidised and polymerized forms, respectively. On the other hand, the oxidised enzyme is more susceptible to in-vitro proteolysis than the native form. However, it is the polymerized form of RuBPCase which is particularly susceptible to in-vitro proteolysis.Western-blotting experiments and anti-ubiquitin antibodies were used to detect the presence of ubiquitin conjugates in extracts from osmotically stressed Lemna fronds. The possible involvement of ubiquitin in the formation of the aggregates is discussed.Abbreviations DTT dithiothreitol - EDTA ethylenediamine-tetraacetic acid - FPLC fast protein liquid chromatography - kDa kilodaltons - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulphonyl fluoride - RuBPCase ribulose bisphosphate carboxylase - SDS sodium dodecyl sulphate - Tris 2-amino-2-(hydroxymethyl)-1,3-propanediol  相似文献   
32.
Cyclic nucleotides play a central role in the modulation of ion channels in a variety of tissues, including the heart. In order to determine the possible role of cyclic GMP (cGMP) in the regulation of the background K channel activity of cardiac cells, the effect of 8-Br-cGMP on the inwardly-rectifying K channels of cultured ventricular myocytes from embryonic chick hearts was examined. 8-Br-cGMP (10-4 to 10-3 M) inhibited these single channel currents within 3 to 10 min. Spontaneous recovery of the currents occurred with prolonged ( 15 min) exposure to 8-Br-cGMP, but this recovery was accompanied by altered channel behavior. Thus, a new long-lasting open state of the channel appeared, in addition to the open state observed prior to 8-Br-cGMP addition. Superfusion of the cells with the muscarinic agonist carbamylcholine (10-5 M) also resulted in inhibition of the currents, which suggests that the cGMP-mediated inhibition of these channels may occur under physiological conditions. Thus, it appears that cGMP may be an important modulator of the background K conductance (and excitability) of cardiac cells.  相似文献   
33.
Previous studies have identified a set of highly phosphorylated proteins of 23–25 kDa accumulated during normal embryogenesis of Zea mays L. and which disappear in early germination. They can be induced precociously in embryos by abscisic acid (ABA) treatment. Here the synthesis and accumulation of this group of proteins and their corresponding mRNAs were examined in ABA-deficient viviparous embryos at different developmental stages whether treated or not with ABA, and in water-stressed leaves of both wild-type and viviparous mutants.During embryogenesis and precocious germination of viviparous embryos the pattern of expression of the 23–25 kDa proteins and mRNAs closely resembles that found in non-mutant embryo development. They are also induced in young viviparous embryos by ABA treatment. In contrast, leaves of ABA-deficient mutants fail to accumulate mRNA in water stress, yet do respond to applied ABA. In water-stressed leaves of wild type plants the mRNAs are induced and translated into 4 proteins with a molecular weight and isoelectric point identical to those found in embryos.These results indicate that the 23–25 kDa protein set is a new member of the recently described class or proteins involved in generalized plant ABA responses.The different pattern of expression for the ABA-regulated 23–25 kDa proteins and mRNAs found in embryo and in vegetative tissues of viviparous mutants is discussed.  相似文献   
34.
Analysis of the far-ultraviolet solution and the oriented-film circular dichroic (CD) spectra of the purple membrane (PM) has indicated that the α-helical segments of its sole protein bacteriorhodopsin (bR) can undergo a significant tilting from the normal to the membrane plane during light-dependent hydroxylamine-mediated bleaching of the bR. However, this drastic change in tertiary structure is free of any observable secondary structural changes. This phenomenon can provide an excellent means for studying the relative contributions of forces responsible for the stability of this transmembrane protein within the membrane bilayer. Perturbation of the PM by varying degrees of papain digestion (resulting in changes in the bR ranging from only an elimination of the long COOH-terminal tail to the additional eliminations of the short NH2-terminal tail and a number of linkage amino acids between the helical segments of the bR) and by chemical cross-linking with dimethyl adipimidate (resulting primarily in the formation of intramolecular cross-links) resulted in a significant increase in this bleaching-induced tilting in all cases except the one in which only the COOH-tail was eliminated. The most severe perturbation (2-wk papain digestion) increased the net tilt angle per segment from 24 to 39° with no indication of any secondary structural changes. Although these perturbations drastically reduced the structural stability of the bR to bleaching, they caused virtually no observable changes in the intramolecular structure of the bR or the supramolecular structure of the PM based on analysis of extensive absorption, linear dichroic, and CD spectra. In addition, study of the bleaching rates for the perturbed PM samples indicated that a linear correlation exists between the calculated initial bleaching rates and the net tilt angles.

Considering the forces generally assumed to account for the stability of transmembrane proteins in membranes, (a) intersegmental hydrogen bonding and electrostatic interactions, (b) electrostatic interactions between hydrophilic polypeptide segments extending outside the bilayer and the many charged lipid heads of the bilayer, and (c) hydrophobic interactions, it is clear that the results of the bleaching experiments eliminate all but perhaps the last as contributing significantly to the bR stability in the PM. Furthermore, they provide more compelling evidence than previously available that the bR is capable of undergoing relatively large retinyldiene-controlled tertiary structural changes and that the chromophoric retinal serves as the most important factor in the native bR structural stability. This dynamic view of the bR bears directly on models proposed for bR function, favoring those in which protein structural metastability, rather than rigidity, is an essential factor. The proteinquake or deformation wave model proposed by this laboratory falls into this category.

  相似文献   
35.
Previous studies have established that Schwann cells (SC) in culture express an NGF receptor. In this study, cultures of fetal human SC were established from fetal nerves and various light microscopic (LM) and electron microscopic (EM) techniques were used to localize the NGF receptor on the SC. Results indicate that NGF receptor is localized to the plasma membrane of the SC. Quantitative digital analysis determined that the distal portion of the SC process had high concentrations of NGF receptor. The possible functional significance of this latter observation is discussed in terms of SC migration and ensheathment of axons.  相似文献   
36.
1. Differential regulation, by dexamethasone, of glucocorticoid receptor gene expression was studied in three different neuronal cultures derived from hypothalamus amygdala, and cerebral cortex. 2. Cellular glucocorticoid receptor (GR) mRNA concentration was measured by hybridization using a 32P-labeled RNA probe complementary to a 2.2-kb fragment of the glucocorticoid receptor mRNA. Changes in the amount of GR mRNA were evaluated in relation to the content of beta-actin mRNA. 3. In cells derived from either hypothalamus or cerebral cortex, we observed a complex pattern of GR mRNA concentrations which were characterized by cyclic variations of GR mRNA content during continuous treatment with dexamethasone for up to 72 hr. 4. In contrast to cells derived from the hypothalamus where a persistent 30-40% reduction in GR mRNA levels was seen for up to a least 72 hr, we observed, in cells derived from the cerebral cortex, a sustained increased (1.4-fold) of the GR mRNA at this same time interval.  相似文献   
37.
Platelet-activating factor (PAF) has been implicated as one of the mediators of cardiac anaphylaxis. This phospholipid has been shown to have numerous effects on a variety of tissues, including the heart. Among these effects are alterations in the resting potential and generation of arrhythmias at very low concentrations. This suggests that PAF may modulate the activity of the background, inwardly-rectifying potassium current (IK1). Thus, the effects of PAF on IK1 were examined at the single channel level. Ventricular cells were isolated from adult guinea pig hearts and single channel currents recorded from cell-attached patches. PAF had substantial effects on the single channel currents at sub-nanomolar concentrations (10–11 to 10–10 M). PAF initially caused flickering of the channels, followed by a gradual prolonged depression of channel activity. Since these potassium channels play a major role in determining the resting potential and excitability of the cardiac cell, the effects of PAF on IK1 may play a major role in the deleterious electrophysiological actions of PAF on the heart.Abbreviations IK1 Inwardly-rectifying background potassium current - Lyso-PAF Lyso-platelet-activating factor - PAF Platelet-activating factor  相似文献   
38.
The voltage-dependent slow channels in the myocardial cell membrane are the major pathway by which Ca2+ ions enter the cell during excitation for initiation and regulation of the force of contraction of cardiac muscle. The slow channels have some special properties, including functional dependence on metabolic energy, selective blockade by acidosis, and regulation by the intracellular cyclic nucleotide levels. Because of these special properties of the slow channels, Ca2+ influx into the myocardial cell can be controlled by extrinsic factors (such as autonomic nerve stimulation or circulating hormones) and by intrinsic factors (such as cellular pH or ATP level). The slow Ca2+ channels of the heart are regulated by cAMP in a stimulatory fashion. Elevation of cAMP produces a very rapid increase in number of slow channels available for voltage activation during excitation. The probability of a slow channel opening and the mean open time of the channel are increased. Therefore, any agent that increases the cAMP level of the myocardial cell will tend to potentiate Isi, Ca2+ influx, and contraction. The myocardial slow Ca2+ channels are also regulated by cGMP, in a manner that is opposite to that of CAMP. The effect of cGMP is presumably mediated by means of phosphorylation of a protein, as for example, a regulatory protein (inhibitory-type) associated with the slow channel. Preliminary data suggest that calmodulin also may play a role in regulation of the myocardial slow Ca2+ channels, possibly mediated by the Ca2+-calmodulin-protein kinase and phosphorylation of some regulatory-type of protein. Thus, it appears that the slow Ca2+ channel is a complex structure, including perhaps several associated regulatory proteins, which can be regulated by a number of extrinsic and intrinsic factors.VSM cells contain two types of Ca2+ channels: slow (L-type) Ca2+ channels and fast (T-type) Ca2+ channels. Although regulation of voltage-dependent Ca2+ slow channels of VSM cells have not been fully clarified yet, we have made some progress towards answering this question. Slow (L-type, high-threshold) Ca2+ channels may be modified by phosphorylation of the channel protein or an associated regulatory protein. In contrast to cardiac muscle where cAMP and cGMP have antagonistic effects on Ca2+ slow channel activity, in VSM, cAMP and cGMP have similar effects, namely inhibition of the Ca2+ slow channels. Thus, any agent that elevates cAMP or cGMP will inhibit Ca2+ influx, and thereby act to produce vasodilation. The Ca2+ slow channels require ATP for activity, with a K0.5 of about 0.3 mM. C-kinase may stimulate the Ca2+ slow channels by phosphorylation. G-protein may have a direct action on the Ca2+ channels, and may mediate the effects of activation of some receptors. These mechanisms of Ca2+ channel regulation may be invoked during exposure to agonists or drugs, which change second messenger levels, thereby controlling vascular tone.  相似文献   
39.
We report the first study of the effect of NaCl on the double-bond isomeric composition of fatty acids and theirsn-1/sn-2 positional distribution in the membrane phospholipids of a moderately halophilic eubacterium. The major phospholipids, phosphatidylethanolamine and phosphatidylglycerol, ofVibrio costicola grown in 1M or 3M NaCl both have ansn-1 saturated,sn-2 unsaturated distribution of fatty acids. There is a greater effect of salinity on the fatty acid composition of phosphatidylglycerol compared with phosphatidylethanolamine. The fatty acids in phosphatidylethanolamine of cultures grown in 1M compared with 3M NaCl have the same unsaturation index and average chain length, but different double-bond isomeric compositions. In comparison, the fatty acid composition of phosphatidylglycerol is more unsaturated, with a different double-bond isomeric distribution, and has a shorter average chain length in cultures grown in 3M compared with 1M NaCl. The pattern of fatty acid isomers of 16:1 and 18:1 shows thatV. costicola uses the anaerobic pathway of fatty acid biosynthesis. The presence of the isomers 16:1c11 and 18:1c13 in the phospholipids of cultures grown in 3M but not in 1M NaCl indicates that external salinity affects the specificity of fatty acid synthetase in this moderately halophilic bacterium.  相似文献   
40.
Acetylation at the -amino terminal is a common post-translational modification of many peptides and proteins. In the case of the potent opiate peptide -endorphin, -N-acetylation is a known physiological modification that abolishes opiate activity. Since there are no known receptors for -N-acetyl--endorphin, we have studied the association of this peptide with calmodulin, a calcium-dependent protein that binds a variety of peptides, phenothiazines, and enzymes, as a model system for studying acetylated endorphin-protein interactions. Association of the acetylated peptide with calmodulin was demonstrated by cross-linking with bis(sulfosuccinimidyl)suberate; like -endorphin, adducts containing 1 mol and 2 mol of acetylated peptide per mole calmodulin were formed. Some of the bound peptides are evidently in relatively close proximity to each other since, in the presence of amidated (i.e., lysine-blocked) calmodulin, cross-linking yielded peptide dimers. The acetylated peptide exhibited no appreciable helicity in aqueous solution, but in trifluoroethanol (TFE) considerable helicity was formed. Also, a mixture of acetylated peptide and calmodulin was characterized by a circular dichroic spectrum indicative of induced helicity. Empirical prediction rules, applied earlier to -endorphin, suggest that residues 14–24 exhibit -helix potential. This segment has the potential of forming an amphipathic helix; this structural unit is believed to be important in calmodulin binding. The acetylated peptide was capable of inhibiting the calmodulin-mediated stimulation of cyclic nucleotide phosphodiesterase (EC 3.1.4.17) activity with an effective dose for 50% inhibition of about 3 µM; this inhibitory effect was demonstrated using both an enzyme-enriched preparation as well as highly purified enzyme. Thus, acetylation at the -amino terminal of -endorphin, although abolishing opiate activity, does not interfere with the binding to calmodulin. Indeed, -endorphin and the -N-acetylated peptide behave very similarly with respect to calmodulin association.Portions of this work are in partial fulfillment of the requirements for the Ph.D. degree from Vanderbilt University.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号