首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36篇
  免费   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   1篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   1篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1994年   1篇
  1991年   1篇
  1989年   1篇
  1975年   2篇
  1971年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
31.
A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme.  相似文献   
32.
The extent of the deactivation of the mitochondrial succinate dehydrogenase by oxaloacetate is a function of the redox state of the enzyme. Oxidized enzyme is deactivated by much lower concentrations of oxaloacetate than those needed to deactivate reduced enzyme. An accurate method for measuring this relationship is the redox titration of the enzymic activity of succinate dehydrogenase, carried out in the presence of oxaloacetate. For each concentration of oxaloacetate a different redox titration curve was reported with the apparent mid-potential decreasing with increasing oxaloacetate. These results are compatible with a model which proposes that both oxidized and reduced enzymes can form the catalytically non-active complex with oxaloacetate, but that the complex formed the the oxidized enzyme is more stable than that formed by the reduced enzyme. When the oxaloacetate concentration is low, reduction of the enzyme will lower the fraction of the succinate dehydrogenase-oxaloacetate complex, a reaction which we observe as reductive activation of the enzyme. If this experiment is repeated in the presence of high concentration of oxaloacetate, no activation of the enzyme takes place, but the low stability of the reduced enzyme oxaloacetate complex is revealed by the rapid exchange of the enzyme-bound oxaloacetate with the free ligand. The rate of this exchange is extremely slow at high positive potential and becomes faster upon lowering of the poise potential. The reductive activation of the succinate dehydrogenase is regarded as a two step reaction. In the first step the reduced non-active complex releases the oxaloacetate and in the second step the active form of the enzyme is evolved. These two steps can be observed experimentally; Reductive activation at a redox potential higher than the mid-potential of the oxaloacetate-malate couple (minus 166 mV) is characterized by Ea = 18 Kca/mole, the final equilibrium level of activation decreases upon lowering of the temperature. Reduction activation of the enzyme at minus 240 mV is a very rapid reaction which goes to completion at all temperatures tested and has an activation energy of 12.5 Kcal/mole. The mechanism of the reductive activation and its possible role in the regulation of succinate dehydrogenase in the mitochondria is discussed.  相似文献   
33.
Scorpion toxins that affect sodium channel (NaCh) gating in excitable cells are divided into alpha- and beta-classes. Whereas alpha-toxins have been found in scorpions throughout the world, anti-mammalian beta-toxins have been assigned, thus far, to 'New World' scorpions while anti-insect selective beta-toxins (depressant and excitatory) have been described only in the 'Old World'. This distribution suggested that diversification of beta-toxins into distinct pharmacological groups occurred after the separation of the continents, 150 million years ago. We have characterized a unique toxin, Lqhbeta1, from the 'Old World' scorpion, Leiurus quinquestriatus hebraeus, that resembles in sequence and activity both 'New World'beta-toxins as well as 'Old World' depressant toxins. Lqhbeta1 competes, with apparent high affinity, with anti-insect and anti-mammalian beta-toxins for binding to cockroach and rat brain synaptosomes, respectively. Surprisingly, Lqhbeta1 also competes with an anti-mammalian alpha-toxin on binding to rat brain NaChs. Analysis of Lqhbeta1 effects on rat brain and Drosophila Para NaChs expressed in Xenopus oocytes revealed a shift in the voltage-dependence of activation to more negative membrane potentials and a reduction in sodium peak currents in a manner typifying beta-toxin activity. Moreover, Lqhbeta1 resembles beta-toxins by having a weak effect on cardiac NaChs and a marked effect on rat brain and skeletal muscle NaChs. These multifaceted features suggest that Lqhbeta1 may represent an ancestral beta-toxin group in 'Old World' scorpions that gave rise, after the separation of the continents, to depressant toxins in 'Old World' scorpions and to various beta-toxin subgroups in 'New World' scorpions.  相似文献   
34.
We have previously found that the postmitotic myotome is formed by two successive waves of myoblasts. A first wave of pioneer cells is generated from the dorsomedial region of epithelial somites. A second wave originates from all four edges of the dermomyotome but cells enter the myotome only from the rostral and caudal lips. We provide new evidence for the existence of these distinctive waves. We show for the first time that when the somite dissociates, pioneer myotomal progenitors migrate as mesenchymal cells from the medial side towards the rostral edge of the segment. Subsequently, they generate myofibers that elongate caudally. Pioneer myofiber differentiation then progresses in a medial-to-lateral direction with fibers reaching the lateralmost region of each segment. At later stages, pioneers participate in the formation of multinucleated fibers during secondary myogenesis by fusing with younger cells. We also demonstrate that subsequent to primary myotome formation by pioneers, growth occurs by uniform cell addition along the dorsoventral myotome. At this stage, the contributing cells arise from multiple sources as the myotome keeps growing even in the absence of the dorsomedial lip. Moreover, as opposed to suggestions that myotome growth is driven primarily and directly by the medial and lateral edges, we demonstrate that there is no direct fiber generation from the dorsomedial lip. Instead, we find that added fibers elongate from the extreme edges. Altogether, the integration between both myogenic waves results in an even pattern of dorsoventral growth of the myotome which is accounted for by progressive cell intercalation of second wave cells between preexisting pioneer fibers.  相似文献   
35.
The scorpion α-toxin Lqh2 (from Leiurus quinquestriatus hebraeus) is active at various mammalian voltage-gated sodium channels (Navs) and is inactive at insect Navs. To resolve the molecular basis of this preference we used the following strategy: 1) Lqh2 was expressed in recombinant form and key residues important for activity at the rat brain channel rNav1.2a were identified by mutagenesis. These residues form a bipartite functional surface made of a conserved “core domain” (residues of the loops connecting the secondary structure elements of the molecule core), and a variable “NC domain” (five-residue turn and the C-tail) as was reported for other scorpion α-toxins. 2) The functional role of the two domains was validated by their stepwise construction on the similar scaffold of the anti-insect toxin LqhαIT. Analysis of the activity of the intermediate constructs highlighted the critical role of Phe15 of the core domain in toxin potency at rNav1.2a, and has suggested that the shape of the NC-domain is important for toxin efficacy. 3) Based on these findings and by comparison with other scorpion α-toxins we were able to eliminate the activity of Lqh2 at rNav1.4 (skeletal muscle), hNav1.5 (cardiac), and rNav1.6 channels, with no hindrance of its activity at Nav1.1–1.3. These results suggest that by employing a similar approach the design of further target-selective sodium channel modifiers is imminent.The pivotal role of voltage-gated sodium channels (Navs)4 in excitability mark them as major targets for a large variety of toxins that bind at distinct receptor sites and modify their gating (1). These channels are large membrane proteins made of a pore-forming α-subunit of ∼260 kDa and auxiliary β-subunits of ∼30 kDa. The α-subunit is composed of four homologous domains (D1–D4), each consisting of six α-helical transmembrane segments (S1–S6) connected by intracellular and extracellular loops. A key feature in Navs function is their ability to rapidly activate and inactivate, leading to transient increase in Na+ conductance through the cell membrane. This mechanism is attributed to the ability of the positively charged S4 voltage sensors to move across the membrane in response to changes in membrane potential (1, 2).In mammals, at least nine genes encode a variety of Nav subtypes (1, 3), whose expression varies greatly in different tissues (Nav1.1–1.3 mainly in the central nervous system; Nav1.6 in both central and peripheral neurons; Nav1.7 in the peripheral nervous system; Nav1.8 and Nav1.9 in sensory neurons; Nav1.4 and Nav1.5 in skeletal and cardiac muscles, respectively). Nav subtypes are distributed heterogeneously in the human brain and their expression is regulated under developmental and pathological conditions (1, 35). In addition, many disorders in humans result from abnormal function due to mutations in various Nav genes (68). Thus, ligands that show specificity for Nav subtypes may be used for their identification at various tissues and as leads for design of specific drugs. This requires that the bioactive surfaces of these ligands be resolved along with molecular details that determine their specificity.Among the wide range of Nav modifiers, those derived from scorpion venoms play an important role in studying channel activation (β-toxins) and inactivation (α-toxins) (911). The channel site of interaction with scorpion α-toxins, named neurotoxin receptor site-3 (12), is shared also by structurally unrelated toxins from sea anemone and spider venoms (13, 14), which raises questions as to its architecture and boundaries. Based on the findings that site-3 toxins eliminate a gating charge component associated with the movement of D4/S4 (15, 16), and that this segment plays a critical role in coupling channel inactivation to activation (17), scorpion α-toxins were postulated to inhibit channel inactivation by hindering the outward movement of this segment during depolarization (9).Scorpion α-toxins constitute a class of structurally and functionally related 61–67-residue long polypeptides reticulated by four conserved disulfide bridges. Despite a common βαββ core (10, 18, 19) these toxins are highly diverse in sequence and preference for insect and mammalian Navs. Indeed, the α-toxin class is divided to pharmacological groups according to their toxicity in insects and mice brain and ability to compete on binding at insect and mammalian Navs (10) (supplemental Fig. S1): (i) classical anti-mammalian toxins, such as Aah2 (from Androctonus australis hector) and Lqh2 (from Leiurus quinquestriatus hebraeus), which bind with high affinity to Navs at rat brain synaptosomes and are practically non-toxic to insects; (ii) α-toxins, such as LqhαIT, which strongly affect insect Navs and are weak in mammalian brain; and (iii) α-like toxins, such as Lqh3 and BmKM1 (from Buthus martensii Karsch), which are active in both mammalian brain and insects.Efforts to identify α-toxin residues involved in the interaction with the Nav receptor site-3 revealed a generally common bioactive surface divided to two topologically distinct domains: a conserved “core domain” formed by residues of the loops connecting the secondary structure elements of the molecule core, and a variable “NC domain” formed by the five-residue turn (residues 8–12) and the C-tail (2023). These analyses raised the hypothesis that a protruding conformation of the NC domain correlates with high activity at insect Navs, whereas a flat conformation of this domain appears in α-toxins active at the brain channel rNav1.2a (21). The correlation of this structural difference with toxin preference for Nav subtypes was corroborated by constructing the bioactive surface of LqhαIT on the scaffold of the anti-mammalian α-toxin Aah2 ending up with a chimera (Aah2LqhαIT(face)) active on insects, whose NC domain is in the protruding conformation (21). Despite this result, the molecular requirements that enable high affinity binding of classical α-toxins to mammalian Navs have not been clarified, and only initial data about the channel region that constitutes receptor site-3 is available (Refs. 2426; also see Ref. 10 for review).Lqh2 is a 64-residue long toxin from L. quinquestriatus hebraeus (Israeli yellow scorpion) (27) that is almost identical in sequence (96% identity) to the most active anti-mammalian toxin, Aah2, whose structure and action are documented (18, 28, 29). By functional expression and mutagenesis we uncovered residues on the Lqh2 exterior that are putatively involved in bioactivity. By construction of these residues on the scaffold of the anti-insect toxin LqhαIT we confirmed their bioactive role and differentiated those that determine toxin potency from those contributing to toxin efficacy. Comparison to other α-toxins was then instrumental for the design of an Lqh2 mutant that exhibits high specificity for the neuronal channels hNav1.1, rNav1.2a, and rNav1.3.  相似文献   
36.
37.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号