首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2007篇
  免费   159篇
  2023年   14篇
  2022年   9篇
  2021年   58篇
  2020年   57篇
  2019年   63篇
  2018年   67篇
  2017年   69篇
  2016年   91篇
  2015年   115篇
  2014年   130篇
  2013年   165篇
  2012年   163篇
  2011年   136篇
  2010年   82篇
  2009年   72篇
  2008年   91篇
  2007年   85篇
  2006年   87篇
  2005年   61篇
  2004年   74篇
  2003年   56篇
  2002年   54篇
  2001年   47篇
  2000年   34篇
  1999年   30篇
  1998年   10篇
  1997年   13篇
  1996年   12篇
  1995年   9篇
  1994年   15篇
  1993年   7篇
  1992年   23篇
  1991年   15篇
  1990年   14篇
  1989年   14篇
  1988年   10篇
  1987年   17篇
  1986年   10篇
  1985年   9篇
  1984年   11篇
  1983年   7篇
  1982年   7篇
  1981年   10篇
  1980年   5篇
  1978年   4篇
  1977年   4篇
  1975年   3篇
  1974年   4篇
  1973年   6篇
  1972年   4篇
排序方式: 共有2166条查询结果,搜索用时 31 毫秒
91.
Stem cell‐based approaches offer great application potential in tissue engineering and regenerative medicine owing to their ability of sensing the microenvironment and respond accordingly (dynamic behavior). Recently, the combination of nanobiomaterials with stem cells has paved a great way for further exploration. Nanobiomaterials with engineered surfaces could mimic the native microenvironment to which the seeded stem cells could adhere and migrate. Surface functionalized nanobiomaterial‐based scaffolds could then be used to regulate or control the cellular functions to culture stem cells and regenerate damaged tissues or organs. Therefore, controlling the interactions between nanobiomaterials and stem cells is a critical factor. However, surface functionalization or modification techniques has provided an alternative approach for tailoring the nanobiomaterials surface in accordance to the physiological surrounding of a living cells; thereby, enhancing the structural and functional properties of the engineered tissues and organs. Currently, there are a variety of methods and technologies available to modify the surface of biomaterials according to the specific cell or tissue properties to be regenerated. This review highlights the trends in surface modification techniques for nanobiomaterials and the biological relevance in stem cell‐based tissue engineering and regenerative medicine. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:554–567, 2016  相似文献   
92.
Nitric oxide (NO) is an important molecule involved in the perception of stress induced by toxic compounds such as arsenic (As). The present study investigated the role of NO applied as sodium nitroprusside (SNP) in cell signalling and the ability of NO to attenuate the toxic effects of As (in the form of sodium arsenate) in water hyacinth (Eichhornia crassipes). Water hyacinth plants were collected and assigned to one of the following treatments: control; 100 μM SNP; 20 μM As; or 20 μM As + 100 μM SNP. The plants remained under these conditions for 0, 4, 12, and 24 h. After each time interval, the plants were collected and As absorption, production of reactive oxygen species (ROS), integrity of membranes, and antioxidant enzyme activities were evaluated. The plants were able to absorb and accumulate large amounts of As, even after only four hours of exposure to the pollutant. The absorption and bioaccumulation factor of As was even greater when plants were exposed to both As and SNP. The accumulation of As triggered increases in ROS production and cell membrane damage. In the presence of SNP, the tolerance index to As increased and damage was mitigated. Therefore, from the present work, it was possible to conclude that exogenous NO influenced the ability of plants to tolerate As; this finding has implications for phytoremediation in areas contaminated by As.  相似文献   
93.
94.
Understanding the structural complexity and the main drivers of animal search behaviour is pivotal to foraging ecology. Yet, the role of uncertainty as a generative mechanism of movement patterns is poorly understood. Novel insights from search theory suggest that organisms should collect and assess new information from the environment by producing complex exploratory strategies. Based on an extension of the first passage time theory, and using simple equations and simulations, we unveil the elementary heuristics behind search behaviour. In particular, we show that normal diffusion is not enough for determining optimal exploratory behaviour but anomalous diffusion is required. Searching organisms go through two critical sequential phases (approach and detection) and experience fundamental search tradeoffs that may limit their encounter rates. Using experimental data, we show that biological search includes elements not fully considered in contemporary physical search theory. In particular, the need to consider search movement as a non‐stationary process that brings the organism from one informational state to another. For example, the transition from remaining in an area to departing from it may occur through an exploratory state where cognitive search is challenged. Therefore, a more comprehensive view of foraging ecology requires including current perspectives about movement under uncertainty.  相似文献   
95.
96.
BackgroundCardiovascular disease has become a major health problem, and it has been associated with both environmental and genetic factors. Studies have shown that the Mediterranean Diet (MeDiet), or its components such as nuts and olive oil, may be strongly associated with the improvement of cardiovascular risk factors in specific populations. The purpose of the GENUTRI study is to investigate the interaction of genetics with cardiovascular risk factors in a non-Mediterranean population with coronary artery disease (CAD) according to three different diets: rich in pecan nuts, in extra-virgin olive oil or a control diet.Methods/designThe GENUTRI study is a single-center, randomized, open-label, parallel-group, 12-week pragmatic clinical trial conducted in patients aged 40 to 80 years and diagnosed with CAD. A standardized questionnaire will be applied to data collection and a blood sample will be obtained for lipid, glycemic and inflammatory profile evaluation. Polymorphisms in the CD36 and STAT3 genes will be detected using the TaqMan® SNP Genotyping Assay. Patients will be allocated in three groups: group 1: 30 g/day of pecan nuts; group 2: 30 ml/day of olive oil; and group 3: control diet. The primary outcome will consist of changes in LDL-cholesterol (in mg/dl) after 12 weeks of intervention.DiscussionStudies have shown the beneficial effects of diets rich in nuts and olive oil mainly in the Mediterranean population. GENUTRI is a clinical trial focusing on the effects of nuts or olive oil supplementation in Brazilian individuals. Additionally, we will try to demonstrate that genetic polymorphisms linked to cardiovascular disease may modulate the effects of different diets on biochemical and inflammatory markers among these subjects.

Trial registration

ClinicalTrials.gov Identifier: NCT02202265 (registered on 18 July 2014: first version).  相似文献   
97.
The preference–performance hypothesis predicts that moth behaviour links plant variations with caterpillar attack and distribution, and the plant‐age hypothesis states that specialist herbivores are more successful in exploring younger plant tissue. We integrated these predictions to investigate underlying mechanisms by which moths and caterpillars of Plutella xylostella L. (Lepidoptera: Plutellidae) track and exploit within‐plant variability of leaf age and stratification. We measured leaf proteins, glucosinolates and fibre, as well as larval choice, developmental performance, and moth oviposition preference with regard to leaf age classes (young, mature and senescent) of three varieties (collard, cauliflower and cabbage) of the main host plant Brassica oleracea L. Larvae consistently fit the prediction that specialist herbivores prefer and perform better on young, upper leaves that have the highest protein level, despite the highest content of defence compounds. Conversely, moths laid more eggs on fibrous and less nutritious leaves from the lower and senescent stratum. We argue that the leaf stratification of host plants imposes conflicting selective pressures concerning offspring feeding and protection on adult females. If egg mortality is catastrophic on the upper nutritious leaves in a particular microclimatic context (e.g. sun, heat, winds, drought or rain‐washing), then oviposition preference will remain for the suboptimal lower and senescent leaves. The ability of larvae to spread upwards over the plant to access the more nutritious leaf stratum is critical when eggs are preferentially laid on the protective low‐quality leaves.  相似文献   
98.
99.
Vilela  E. M.  Ladeiras-Lopes  R.  Ruivo  C.  Torres  S.  Braga  J.  Fonseca  M.  Ribeiro  J.  Primo  J.  Fontes-Carvalho  R.  Campos  L.  Miranda  F.  Nunes  J. P. L.  Gama  V.  Teixeira  M.  Braga  P. 《Netherlands heart journal》2019,27(7-8):347-353
Introduction

Exercise-based cardiac rehabilitation (EBCR) is part of the management of patients who have suffered an acute myocardial infarction (AMI). Patients with a reduced ejection fraction (EF) comprise a higher-risk subgroup and are referred less often for these programmes. This study aimed at assessing the impact of the baseline EF on the functional benefits, as assessed by peak oxygen uptake (pVO2) and exercise duration, of an EBCR programme in AMI survivors.

Methods

Observational, retrospective cohort study including all patients admitted to a tertiary centre due to an AMI who completed a phase II EBCR programme after discharge, between November 2012 and April 2017. Functional parameters were assessed by a symptom-limited cardiopulmonary exercise test.

Results

A total of 379 patients were included [40.9% with reduced EF (<50%) at discharge]. After the programme, pVO2 and exercise duration increased significantly (p < 0.001). Patients with a reduced EF had a lower pVO2 and completed a shorter duration of exercise at the beginning and end of the programme. This group presented a higher increase in pVO2 (p = 0.001) and exercise duration (p = 0.007). This was maintained after adjusting for age, gender, history of coronary artery disease, number of sessions, Killip classification, arterial hypertension, dyslipidaemia, diabetes mellitus, smoking status and baseline pVO2.

Conclusion

A phase II EBCR programme was associated with significant improvements in pVO2 and exercise duration among AMI survivors, irrespective of baseline EF classification. Those with a reduced baseline EF derived an even greater improvement, highlighting the importance of EBCR in this subgroup of patients.

  相似文献   
100.
Sepsis is an extreme host response to infection that leads to loss of organ function and cardiovascular integrity. Mortality from sepsis is on the rise. Despite more than three decades of research and clinical trials, specific diagnostic and therapeutic strategies for sepsis are still absent. The use of LFQ‐ and TMT‐based quantitative proteomics is reported here to study the plasma proteome in five mouse models of sepsis. A knowledge‐based interpretation of the data reveals a protein network with extensive connectivity through documented functional or physical interactions. The individual proteins in the network all have a documented role in sepsis and are known to be extracellular. The changes in protein abundance observed in the mouse models of sepsis have for the most part the same directionality (increased or decreased abundance) as reported in the literature for human sepsis. This network has been named the Plasma Proteome Signature of Sepsis (PPSS). The PPSS is a quantifiable molecular readout that can supplant the current symptom‐based approach used to diagnose sepsis. This type of molecular interpretation of sepsis, its progression, and its response to therapeutic intervention are an important step in advancing our understanding of sepsis, and for discovering and evaluating new therapeutic strategies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号