首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   169篇
  免费   11篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   9篇
  2020年   5篇
  2019年   12篇
  2018年   5篇
  2017年   6篇
  2016年   7篇
  2015年   11篇
  2014年   14篇
  2013年   17篇
  2012年   17篇
  2011年   12篇
  2010年   6篇
  2009年   7篇
  2008年   3篇
  2007年   2篇
  2006年   7篇
  2005年   11篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1998年   4篇
  1997年   4篇
  1995年   1篇
  1992年   2篇
  1991年   1篇
  1987年   1篇
  1985年   2篇
  1982年   3篇
排序方式: 共有181条查询结果,搜索用时 312 毫秒
71.

Background

Plasmodiophora brassicae is the causal agent of clubroot disease of cruciferous plants and one of the biggest threats to the rapeseed (Brassica napus) and brassica vegetable industry worldwide.

Disease symptoms

In the advanced stages of clubroot disease wilting, stunting, yellowing, and redness are visible in the shoots. However, the typical symptoms of the disease are the presence of club-shaped galls in the roots of susceptible hosts that block the absorption of water and nutrients.

Host range

Members of the family Brassicaceae are the primary host of the pathogen, although some members of the family, such as Bunias orientalis, Coronopus squamatus, and Raphanus sativus, have been identified as being consistently resistant to P. brassicae isolates with variable virulence profile.

Taxonomy

Class: Phytomyxea; Order: Plasmodiophorales; Family: Plasmodiophoraceae; Genus: Plasmodiophora; Species: Plasmodiophora brassicae (Woronin, 1877).

Distribution

Clubroot disease is spread worldwide, with reports from all continents except Antarctica. To date, clubroot disease has been reported in more than 80 countries.

Pathotyping

Based on its virulence on different hosts, P. brassicae is classified into pathotypes or races. Five main pathotyping systems have been developed to understand the relationship between P. brassicae and its hosts. Nowadays, the Canadian clubroot differential is extensively used in Canada and has so far identified 36 different pathotypes based on the response of a set of 13 hosts.

Effectors and resistance

After the identification and characterization of the clubroot pathogen SABATH-type methyltransferase PbBSMT, several other effectors have been characterized. However, no avirulence gene is known, hindering the functional characterization of the five intercellular nucleotide-binding (NB) site leucine-rich-repeat (LRR) receptors (NLRs) clubroot resistance genes validated to date.

Important Link

Canola Council of Canada is constantly updating information about clubroot and P. brassicae as part of their Canola Encyclopedia: https://www.canolacouncil.org/canola-encyclopedia/diseases/clubroot/ .

Phytosanitary categorization

PLADBR: EPPO A2 list; Annex designation 9E.  相似文献   
72.
The effects of Ba2+ ions on twitches, K+-induced contractures, and on intracellularly recorded membrane potentials (Em) and depolarizations of frog skeletal muscle fibres were investigated. Exposure of toe muscles to choline--Ringer's solution with 10(-3) M Ba2+ with Ca2+ (1.08 mM) eliminated or very greatly reduced contractures produced by 60 mM K+. In contrast, not only did the same concentration of Ba2+ ions fail to depress the twitch tension of isolated semitendinosus fibres when added to Ringer's with Ca2+, but it even restored twitches that had been eliminated in a zero Ca2+ Ringer's solution. The resting Em of sartorius muscle fibres in choline--Ringer's solution was reduced about 20 mV by 10(-3) M Ba2+. This Ba2+ ion concentration also antagonized the K+-induced depolarization. Thus in the presence of 1 mM Ba2+, 20 mM K+ hyperpolarized rather than depolarized the fibres and 60 or 123 mM K+ produced only very slowly developing, small depolarizations. These results suggest that the loss of the K+-induced contracture in choline-Ringer's caused by Ba2+ ions is due to an inhibition of the K+-induced depolarization. The latter result is consistent with previous findings of other workers that Ba2+ ions block membrane K+ channels.  相似文献   
73.
Right brain damaged patients show impairments in sequential decision making tasks for which healthy people do not show any difficulty. We hypothesized that this difficulty could be due to the failure of right brain damage patients to develop well-matched models of the world. Our motivation is the idea that to navigate uncertainty, humans use models of the world to direct the decisions they make when interacting with their environment. The better the model is, the better their decisions are. To explore the model building and updating process in humans and the basis for impairment after brain injury, we used a computational model of non-stationary sequence learning. RELPH (Reinforcement and Entropy Learned Pruned Hypothesis space) was able to qualitatively and quantitatively reproduce the results of left and right brain damaged patient groups and healthy controls playing a sequential version of Rock, Paper, Scissors. Our results suggests that, in general, humans employ a sub-optimal reinforcement based learning method rather than an objectively better statistical learning approach, and that differences between right brain damaged and healthy control groups can be explained by different exploration policies, rather than qualitatively different learning mechanisms.  相似文献   
74.
75.
76.
Despite the effectiveness of vaccines in dramatically decreasing the number of new infectious cases and severity of illnesses, imperfect vaccines may not completely prevent infection. This is because the immunity afforded by these vaccines is not complete and may wane with time, leading to resurgence and epidemic outbreaks notwithstanding high levels of primary vaccination. To prevent an endemic spread of disease, and achieve eradication, several countries have introduced booster vaccination programs. The question of whether this strategy could eventually provide the conditions for global eradication is addressed here by developing a seasonally-forced mathematical model. The analysis of the model provides the threshold condition for disease control in terms of four major parameters: coverage of the primary vaccine; efficacy of the vaccine; waning rate; and the rate of booster administration. The results show that if the vaccine provides only temporary immunity, then the infection typically cannot be eradicated by a single vaccination episode. Furthermore, having a booster program does not necessarily guarantee the control of a disease, though the level of epidemicity may be reduced. In addition, these findings strongly suggest that the high coverage of primary vaccination remains crucial to the success of a booster strategy. Simulations using estimated parameters for measles illustrate model predictions. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC). One of the authors (P.R.) acknowledges the support of the Ellison Medical Foundation.  相似文献   
77.
Seasonality and the dynamics of infectious diseases   总被引:8,自引:1,他引:7  
Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host–pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite–host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions.  相似文献   
78.
Theoretical studies of wildlife population dynamics have proved insightful for sustainable management, where the principal aim is to maximize short-term yield, without risking population extinction. Surprisingly, infectious diseases have not been accounted for in harvest models, which is a major oversight because the consequences of parasites for host population dynamics are well-established. Here, we present a simple general model for a host species subject to density dependent reproduction and seasonal demography. We assume this host species is subject to infection by a strongly immunizing, directly transmitted pathogen. In this context, we show that the interaction between density dependent effects and harvesting can substantially increase both disease prevalence and the absolute number of infectious individuals. This effect clearly increases the risk of cross-species disease transmission into domestic and livestock populations. In addition, if the disease is associated with a risk of mortality, then the synergistic interaction between hunting and disease-induced death can increase the probability of host population extinction.  相似文献   
79.
80.
The optical resolution of p‐chloromandelic acid using (R)‐α‐phenylethylamine as resolving agent was presented. The effect of solvents, molar ratio of racemate to the resolving agent, filtration temperature as well as the amount of solvent on resolution was investigated by orthogonal experimentation. The binary melting point phase diagram and crystal structure analysis of diastereomeric salts rationalized the success of the resolution. Chirality, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号