首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   658篇
  免费   76篇
  国内免费   1篇
  2023年   6篇
  2022年   5篇
  2021年   19篇
  2020年   8篇
  2019年   10篇
  2018年   13篇
  2017年   15篇
  2016年   22篇
  2015年   23篇
  2014年   33篇
  2013年   51篇
  2012年   47篇
  2011年   62篇
  2010年   32篇
  2009年   32篇
  2008年   27篇
  2007年   46篇
  2006年   36篇
  2005年   24篇
  2004年   14篇
  2003年   18篇
  2002年   19篇
  2001年   11篇
  2000年   15篇
  1999年   7篇
  1998年   7篇
  1997年   6篇
  1996年   6篇
  1992年   8篇
  1991年   8篇
  1990年   6篇
  1989年   7篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   4篇
  1978年   8篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
  1973年   3篇
  1972年   4篇
  1971年   3篇
  1969年   6篇
  1968年   3篇
排序方式: 共有735条查询结果,搜索用时 187 毫秒
31.

Background

Injection localized amyloidosis is one of the most prevalent disorders in type II diabetes mellitus (TIIDM) patients relying on insulin injections. Previous studies have reported that nanoparticles can play a role in the amyloidogenic process of proteins. Hence, the present study deals with the effect of zinc oxide nanoparticles (ZnONP) on the amyloidogenicity and cytotoxicity of insulin.

Methods

ZnONP is synthesised and characterized using XRD, Zeta Sizer, UV-Visible spectroscope and TEM. The characterization is followed by ZnONP interaction with insulin, which is studied employing fluorescence spectroscopes, isothermal titration calorimetry and molecular dynamics simulations. The interaction leads insulin conformational rearrangement into amyloid-like fibril, which is studied using thioflavin T dye binding assay, circular dichroism spectroscopy and TEM, followed by cytotoxicity propensity using Alamar Blue dye reduction assay.

Results

Insulin has very weak interaction with ZnONP interface. Insulin at studied concentration forms amorphous aggregates at physiological pH, whereas in presence of ZnONP interface amyloid-like fibrils are formed. While the amyloid-like fibrils are cytotoxic to MIN6 and THP-1 cell lines, insulin and ZnONP individual solutions and their fresh mixtures enhance the cells proliferation.

Conclusions

The presence of ZnONP interface enhances insulin fibrillation at physiological pH by providing a favourable template for the nucleation and growth of insulin amyloids.

General significance

The studied protein-nanoparticle system from protein conformational dynamics point of view throws caution over nanoparticle use in biological applications, especially in vivo applications, considering the amyloidosis a very slow but non-curable degenerative disease.  相似文献   
32.
Brown plant hopper (BPH) is one of the major destructive insect pests of rice, causing severe yield loss. Thirty-two BPH resistance genes have been identified in cultivated and wild species of rice Although, molecular mechanism of rice plant resistance against BPH studied through map-based cloning, due to non-existence of NMR/crystal structures of Bph14 protein, recognition of leucine-rich repeat (LRR) domain and its interaction with different ligands are poorly understood. Thus, in the present study, in silico approach was adopted to predict three-dimensional structure of LRR domain of Bph14 using comparative modelling approach followed by interaction study with jasmonic and salicylic acids. LRR domain along with LRR-jasmonic and salicylic acid complexes were subjected to dynamic simulation using GROMACS, individually, for energy minimisation and refinement of the structure. Final binding energy of jasmonic and salicylic acid with LRR domain was calculated using MM/PBSA. Free-energy landscape analysis revealed that overall stability of LRR domain of Bph14 is not much affected after forming complex with jasmonic and salicylic acid. MM/PBSA analysis revealed that binding affinities of LRR domain towards salicylic acid is higher as compared to jasmonic acid. Interaction study of LRR domain with salicylic acid and jasmonic acid reveals that THR987 of LRR form hydrogen bond with both complexes. Thus, THR987 plays active role in the Bph14 and phytochemical interaction for inducing resistance in rice plant against BPH. In future, Bph14 gene and phytochemicals could be used in BPH management and development of novel resistant varieties for increasing rice yield.  相似文献   
33.
Pathological alterations in various organs of rohu (L. rohita) fingerlings following acute (0, 7.50, 11.25 and 13.75 mg/kg body weight) and subchronic (0, 1.25 and 2.50 mg/kg body weight) single i.p. aflatoxin B1 exposure for 10 and 90 days, respectively, were investigated. Mortality (dose-dependent) was marked only during acute toxicosis. The changes observed in various organs were dose and time dependent. The acute dose groups revealed toxic changes viz., necrotic and vascular changes in liver and gill lamellae; meningitis, congestion in brain, degeneration and inflammatory reaction in heart along with degenerative to necrotic changes in kidney tubules and sloughing of the intestinal mucosa. During subchronic exposure to this toxin, preneoplastic lesions in liver along with changes in spleen, intestine, gill and pancreas were recorded. With low doses of aflatoxin, the fish did not reveal any mortality or external signs other than catchexia and increased pigmentation on scales. In composite culture practice of Indian major carps, this could be of economic significance.  相似文献   
34.
We have prepared a mutant RecA protein in which proline 67 and glutamic acid 68 in the NTP binding site were replaced by a glycine and alanine residue, respectively. The [P67G/E68A]RecA protein catalyzes the single-stranded DNA-dependent hydrolysis of ATP and is able to promote the standard ATP-dependent three-strand exchange reaction between a circular bacteriophage phiX174 (phiX) single-stranded DNA molecule and a homologous linear phiX double-stranded (ds) DNA molecule (5.4 kilobase pairs). The strand exchange activity differs from that of the wild type RecA protein, however, in that it is (i) completely inhibited by an ATP regeneration system, and (ii) strongly stimulated by the addition of high concentrations of ADP to the reaction solution. These results indicate that the strand exchange activity of the [P67G/E68A]RecA protein is dependent on the presence of both ATP and ADP. The ADP dependence of the reaction is reduced or eliminated when (i) a shorter linear phiX dsDNA fragment (1.1 kilobase pairs) is substituted for the full-length linear phiX dsDNA substrate, or (ii) the Mg(2+) concentration is reduced to a level just sufficient to complex the ATP present in the reaction solution. These results indicate that it is the branch migration phase (and not the initial pairing step) of the [P67G/E68A]RecA protein-promoted strand exchange reaction that is dependent on ADP. It is likely that the [P67G/E68A]RecA mutation has revealed a requirement for ADP that also exists (but is not as readily apparent) in the strand exchange reaction of the wild type RecA protein.  相似文献   
35.
Retinyl esters (RE) have been used extensively as markers to study chylomicron (CM) catabolism because they are secreted in the postprandial state with CM and do not exchange with other lipoproteins in the plasma. To understand the mechanism of secretion of RE by the intestine under the fasting and postprandial states, differentiated Caco-2 cells were supplemented with radiolabeled retinol under conditions that support or do not support CM secretion. We observed that these cells assimilate vitamin A by a rapid uptake mechanism. After uptake, cells store retinol in both esterified and unesterified forms. Under fasting conditions, cells do not secrete RE but secrete free retinol unassociated with lipoproteins. Under postprandial conditions, cells secrete significant amounts of RE only with CM. The secretion of RE with CM was independent of the rate of uptake of retinol and intracellular free and esterified retinol levels, and was absolutely dependent on the assembly and secretion of CM. The secretion of RE was correlated with the secretion of CM and not with the secretion of total apolipoprotein B. Inhibition of CM secretion by Pluronic L81 decreased the secretion of RE and did not result in their increased secretion with smaller lipoproteins. These data strongly suggest that RE secretion by the intestinal cells is a specific and regulated process that occurs in the postprandial state and is dependent on the assembly and secretion of CM. We propose that RE are added to CM during final stages of lipoprotein assembly and may serve as signposts for these steps.  相似文献   
36.
The immunosuppressive effects of bath exposure to a sub lethal concentration of the synthetic pyrethroid alpha-permethrin (3.05 x 10(-4) mg l(-1)) in the Indian Major carp, Labeo rohita was studied after 45 days' exposure. In some groups, the effects of alpha-permethrin on non-specific defences and serum enzymes of carp were investigated after challenge with Aeromonas hydrophila. Several nonspecific immune responses and serum enzymes were reduced after exposure of alpha-permethrin. Bactericidal activity of rohu serum was reduced significantly in pesticide and bacteria treated fish. The Glutamic Oxaloacetate Transaminase (GOT) and Glutamic Pyruvate Transaminase (GPT) activity were increased in immunosuppressed fish. Blood glucose level was elevated significantly and Hb% was reduced significantly in pesticide and bacteria treated fishes as compared to the negative control.  相似文献   
37.
The mismatch repair proteins, MutS and MutL, interact in a DNA mismatch and ATP-dependent manner to activate downstream events in repair. Here, we assess the role of ATP binding and hydrolysis in mismatch recognition by MutS and the formation of a ternary complex involving MutS and MutL bound to a mismatched DNA. We show that ATP reduces the affinity of MutS for mismatched DNA and that the modulation of DNA binding affinity by nucleotide is even more pronounced for MutS E694A, a protein that binds ATP but is defective for ATP hydrolysis. Despite the ATP hydrolysis defect, E694A, like WT MutS, undergoes rapid, ATP-dependent dissociation from a DNA mismatch. Furthermore, MutS E694A retains the ability to interact with MutL on mismatched DNA. The recruitment of MutL to a mismatched DNA by MutS is also observed for two mutant MutL proteins, E29A, defective for ATP hydrolysis, and R266A, defective for DNA binding. These results suggest that ATP binding in the absence of hydrolysis is sufficient to trigger formation of a MutS sliding clamp. However, recruitment of MutL results in the formation of a dynamic ternary complex that we propose is the intermediate that signals subsequent repair steps requiring ATP hydrolysis.  相似文献   
38.
Hui EK  Barman S  Yang TY  Nayak DP 《Journal of virology》2003,77(12):7078-7092
Influenza type A virus matrix (M1) protein possesses multiple functional motifs in the helix 6 (H6) domain (amino acids 91 to 105), including nuclear localization signal (NLS) (101-RKLKR-105) involved in translocating M1 from the cytoplasm into the nucleus. To determine the role of the NLS motif in the influenza virus life cycle, we mutated these and the neighboring sequences by site-directed mutagenesis, and influenza virus mutants were generated by reverse genetics. Our results show that infectious viruses were rescued by reverse genetics from all single alanine mutations of amino acids in the H6 domain and the neighboring region except in three positions (K104A and R105A within the NLS motif and E106A in loop 6 outside the NLS motif). Among the rescued mutant viruses, R101A and R105K exhibited reduced growth and small-plaque morphology, and all other mutant viruses showed the wild-type phenotype. On the other hand, three single mutations (K104A, K105A, and E106A) and three double mutations (R101A/K102A, K104A/K105A, and K102A/R105A) failed to generate infectious virus. Deletion (Delta YRKL) or mutation (4A) of YRKL also abolished generation of infectious virus. However, replacement of the YRKL motif with PTAP or YPDL as well as insertion of PTAP after 4A mutation yielded infectious viruses with the wild-type phenotype. Furthermore, mutant M1 proteins (R101A/K102A, Delta YRKL, 4A, PTAP, 4A+PTAP, and YPDL) when expressed alone from cloned cDNAs were only cytoplasmic, whereas the wild-type M1 expressed alone was both nuclear and cytoplasmic as expected. These results show that the nuclear translocation function provided by the positively charged residues within the NLS motif does not play a critical role in influenza virus replication. Furthermore, these sequences of H6 domain can be replaced by late (L) domain motifs and therefore may provide a function similar to that of the L domains of other negative-strand RNA and retroviruses.  相似文献   
39.
The efficacy of bifenthrin (0.5 mg/kg) + piperonyl butoxide (7 mg/kg) + chlorpyrifosmethyl (10 mg/kg) against beetle and psocid pests of sorghum was evaluated in silo-scale trials in southeast Queensland, Australia. The pyrethroid bifenthrin was evaluated as a potential new protectant in combination with the organophosphate chlorpyrifos-methyl, which is already registered for control of several insect pests of stored cereals. Sorghum (approximately 200 metric tons) was treated after both the 1999 and 2000 harvests and sampled at intervals to assess treatment efficacy and residue decline during up to 7 mo of storage. Generally, test strains of the beetles Rhyzopertha dominica (F.), Tribolium castaneum (Herbst), Oryzaephilus surinamensis (L), and Cryptolestes ferrugineus (Stephens) were prevented from producing live progeny for up to 7 mo. The treatment failed against one strain of R. dominica known to be resistant to bioresmethrin and organophosphates. Two malathion-resistant strains of O. surinamensis were marginally controlled with 94-100% fewer adult progeny produced. For psocids, no strains of Liposcelis bostrychophila Badonnel, Liposcelis decolor (Pearman), or Liposcelis paeta Pearman produced live progeny, although the control of a field strain of Liposcelis entomophila (Enderlein) was generally poor. Results show that this treatment should protect sorghum for at least 7 mo against most prevalent strains of grain insect in eastern Australia, although control may be limited in areas in which L. entomophila or pyrethroid-resistant R. dominica are present.  相似文献   
40.
The equatorial segment of the acrosome underlies the domain of the sperm that fuses with the egg membrane during fertilization. Equatorial segment protein (ESP), a novel 349-amino acid concanavalin-A-binding protein encoded by a two-exon gene (SP-ESP) located on chromosome 15 at q22, has been localized to the equatorial segment of ejaculated human sperm. Light microscopic immunofluorescent observations revealed that during acrosome biogenesis ESP first appears in the nascent acrosomal vesicle in early round spermatids and subsequently segregates to the periphery of the expanding acrosomal vesicle, thereby defining a peripheral equatorial segment compartment within flattened acrosomal vesicles and in the acrosomes of early and late cap phase, elongating, and mature spermatids. Electron microscopic examination revealed that ESP segregates to an electron-lucent subdomain of the condensing acrosomal matrix in Golgi phase round spermatids and persists in a similar electron-lucent subdomain within cap phase spermatids. Subsequently, ESP was localized to electron-dense regions of the equatorial segment and the expanded equatorial bulb in elongating spermatids and mature sperm. ESP is the earliest known protein to be recognized as a marker for the specification of the equatorial segment, and it allows this region to be traced through all phases of acrosomal biogenesis. Based on these observations, we propose a new model of acrosome biogenesis in which the equatorial segment is defined as a discrete domain within the acrosomal vesicle as early as the Golgi phase of acrosome biogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号