首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   480篇
  免费   28篇
  2023年   2篇
  2021年   8篇
  2020年   6篇
  2019年   6篇
  2018年   4篇
  2017年   4篇
  2016年   15篇
  2015年   22篇
  2014年   28篇
  2013年   20篇
  2012年   31篇
  2011年   32篇
  2010年   22篇
  2009年   17篇
  2008年   39篇
  2007年   36篇
  2006年   41篇
  2005年   35篇
  2004年   21篇
  2003年   28篇
  2002年   16篇
  2001年   7篇
  2000年   3篇
  1998年   4篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1987年   6篇
  1986年   1篇
  1985年   4篇
  1984年   3篇
  1983年   4篇
  1982年   1篇
  1980年   1篇
  1979年   3篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1971年   2篇
  1970年   2篇
  1969年   2篇
  1968年   1篇
  1967年   2篇
  1966年   1篇
  1965年   1篇
  1963年   1篇
排序方式: 共有508条查询结果,搜索用时 171 毫秒
71.
72.
Chronic pancreatitis and pancreatic adenocarcinoma are extensively studied as common and potentially lethal disorders. However, their causes and genetic background in most cases remain unclear. The C677T polymorphism in 5',10'-methylenetetrahydrofolate reductase (MTHFR) gene may modulate the risk of pancreatic disorders. In this study, we tested whether MTHFR C677T polymorphism is associated with chronic pancreatitis and pancreatic adenocarcinoma in the Serbian population. DNA was extracted from blood samples of 51 chronic pancreatitis patients, 21 pancreatic adenocarcinoma patients, and a control group consisting of 50 healthy smokers. The MTHFR C677T polymorphism was analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique. Although, no statistically significant differences were observed in the distribution of MTHFR genotype or allele frequencies between patients and control groups, the results showed an increased frequency of homozygotes for MTHFR C677T polymorphism in chronic pancreatitis patients (14%) and a decreased frequency in pancreatic adenocarcinoma patients (5%) in comparison to the control group (8%). We speculate that the MTHFR C677T polymorphism could act as a possible risk factor for chronic pancreatitis and a possible protective factor in pancreatic adenocarcinoma. This observation needs further investigation in prospective studies on a larger number of patients, in which the effect of other genetic and environmental factors should also be taken into consideration.  相似文献   
73.
Large long projecting (cortico-cortical) layer IIIc pyramidal neurons were recently disclosed to be in the basis of cognitive processing in primates. Therefore, we quantitatively examined the basal dendritic morphology of these neurons by using rapid Golgi and Golgi Cox impregnation methods among three distinct Brodmann areas (BA) of an adult human frontal cortex: the primary motor BA4 and the associative magnopyramidal BA9 from left hemisphere and the Broca's speech BA45 from both hemispheres. There was no statistically significant difference in basal dendritic length or complexity, as dendritic spine number or their density between analyzed BA's. In addition, we analyzed each of these BA's immunocytochemically for distribution of SMI-32, a marker of largest long distance projecting neurons. Within layer IIIc, the highest density of SMI-32 immunopositive pyramidal neurons was observed in associative BA9, while in primary BA4 they were sparse. Taken together, these data suggest that an increase in the complexity of cortico-cortical network within human frontal areas of different functional order may be principally based on the increase in density of large, SMI-32 immunopositive layer IIIc neurons, rather than by further increase in complexity of their dendritic tree and synaptic network.  相似文献   
74.
Subplate zone (SP) is prominent, transient laminar compartment of the human fetal cerebral wall. The SP develops around 13 and gradually disappears after 32-34 postovulatory weeks. The SP neurons can be found as late as nine postnatal months, while remnants of the SP neurons can be traced until adult age in the form of interstitial neurons of the gyral white matter. SP is composed of postmigratory and migratory neurons, growth cones, loosely arranged axons, dendrites, glial cell and synapses. The remarkable feature of the SP is the presence of large amount of extracellular matrix. This feature can be used for delineation of SP in magnetic resonance images (MRI) of both, in vivo and post mortem brains. The importance of SP as the main synaptic zone of the human fetal cortex is based on the rich input of ,waiting,< afferents from thalamus and cortex, during the crucial phase of cortical target area selection. SP increases during mammalian evolution and culminates in human brain concomitantly with increase in number and diversity of cortico-cortical fibers. The recent neurobiological evidence shows that SP is important site of spontaneous endogeneous activity, building a framework for development of cortical columnar organization. The SP which can be readily visualized on conventional and DTI (diffusion-tensor-imaging) MRI in vivo, today is in the focus of interest of pediatric neurology due to the following facts: (1) SP is the site of early neural activity, (2) SP is the major substrate for functional plasticity, and (3) selective vulnerability of SP may lead to cognitive impairment.  相似文献   
75.
Simple stochastic models for phylogenetic trees on species have been well studied. But much paleontology data concerns time series or trees on higher-order taxa, and any broad picture of relationships between extant groups requires use of higher-order taxa. A coherent model for trees on (say) genera should involve both a species-level model and a model for the classification scheme by which species are assigned to genera. We present a general framework for such models, and describe three alternate classification schemes. Combining with the species-level model of Aldous and Popovic (Adv Appl Probab 37:1094–1115, 2005), one gets models for higher-order trees, and we initiate analytic study of such models. In particular we derive formulas for the lifetime of genera, for the distribution of number of species per genus, and for the offspring structure of the tree on genera. David Aldous’s research was supported by NSF Grant DMS-0704159.  相似文献   
76.
77.
78.
Understanding the biophysical properties and functional organization of single neurons and how they process information is fundamental for understanding how the brain works. The primary function of any nerve cell is to process electrical signals, usually from multiple sources. Electrical properties of neuronal processes are extraordinarily complex, dynamic, and, in the general case, impossible to predict in the absence of detailed measurements. To obtain such a measurement one would, ideally, like to be able to monitor, at multiple sites, subthreshold events as they travel from the sites of origin on neuronal processes and summate at particular locations to influence action potential initiation. This goal has not been achieved in any neuron due to technical limitations of measurements that employ electrodes. To overcome this drawback, it is highly desirable to complement the patch-electrode approach with imaging techniques that permit extensive parallel recordings from all parts of a neuron. Here, we describe such a technique - optical recording of membrane potential transients with organic voltage-sensitive dyes (Vm-imaging) - characterized by sub-millisecond and sub-micrometer resolution. Our method is based on pioneering work on voltage-sensitive molecular probes 2. Many aspects of the initial technology have been continuously improved over several decades 3, 5, 11. Additionally, previous work documented two essential characteristics of Vm-imaging. Firstly, fluorescence signals are linearly proportional to membrane potential over the entire physiological range (-100 mV to +100 mV; 10, 14, 16). Secondly, loading neurons with the voltage-sensitive dye used here (JPW 3028) does not have detectable pharmacological effects. The recorded broadening of the spike during dye loading is completely reversible 4, 7. Additionally, experimental evidence shows that it is possible to obtain a significant number (up to hundreds) of recordings prior to any detectable phototoxic effects 4, 6, 12, 13. At present, we take advantage of the superb brightness and stability of a laser light source at near-optimal wavelength to maximize the sensitivity of the Vm-imaging technique. The current sensitivity permits multiple site optical recordings of Vm transients from all parts of a neuron, including axons and axon collaterals, terminal dendritic branches, and individual dendritic spines. The acquired information on signal interactions can be analyzed quantitatively as well as directly visualized in the form of a movie.  相似文献   
79.
All living structures, from archaea to human, are open thermodynamic systems analysed through nonequilibrium thermodynamics. Nonequilibrium thermodynamics is a field with important applications to life sciences, which is very often left out of life science courses. A three-step method is suggested to make an easy introduction of nonequilibrium thermodynamics to life science students. The first step is to introduce the Prigogine equation dS = deS + diS, and explain the meaning of the entropy exchange with the surroundings deS and internal entropy generation in the system diS. The second step is to show that the Prigogine equation is connected to the equilibrium thermodynamics already known to students. This can be done by deriving the Clausius inequality dS ≥ dq/T, from the Prigogine equation applied to reversible and irreversible processes in closed systems. Reversible and irreversible processes are discussed separately and the results are then combined into the Clausius inequality. The third step is to introduce the fact that the Prigogine equation has a variety of applications in life sciences. This would give the students an opportunity to understand the entropy balance of physiological processes in cells and organisms. The import and accumulation of entropy, entropy generation, and entropy export could be made easier for students to adopt.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号