首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4754篇
  免费   333篇
  国内免费   5篇
  2024年   3篇
  2023年   38篇
  2022年   23篇
  2021年   155篇
  2020年   87篇
  2019年   114篇
  2018年   166篇
  2017年   117篇
  2016年   189篇
  2015年   270篇
  2014年   285篇
  2013年   351篇
  2012年   441篇
  2011年   470篇
  2010年   289篇
  2009年   227篇
  2008年   261篇
  2007年   335篇
  2006年   254篇
  2005年   231篇
  2004年   221篇
  2003年   187篇
  2002年   153篇
  2001年   34篇
  2000年   17篇
  1999年   16篇
  1998年   28篇
  1997年   18篇
  1996年   20篇
  1995年   6篇
  1994年   10篇
  1993年   7篇
  1991年   4篇
  1990年   3篇
  1989年   7篇
  1988年   3篇
  1986年   3篇
  1985年   2篇
  1984年   2篇
  1983年   3篇
  1982年   4篇
  1981年   3篇
  1980年   2篇
  1978年   3篇
  1977年   5篇
  1976年   3篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有5092条查询结果,搜索用时 15 毫秒
41.
Parental care involves elaborate behavioural interactions between parents and their offspring, with offspring stimulating their parents via begging to provision resources. Thus, begging has direct fitness benefits as it enhances offspring growth and survival. It is nevertheless subject to a complex evolutionary trajectory, because begging may serve as a means for the offspring to manipulate parents in the context of evolutionary conflicts of interest. Furthermore, it has been hypothesized that begging is coadapted and potentially genetically correlated with parental care traits as a result of social selection. Further experiments on the causal processes that shape the evolution of begging are therefore essential. We applied bidirectional artificial selection on begging behaviour, using canaries (Serinus canaria) as a model species. We measured the response to selection, the consequences for offspring development, changes in parental care traits, here the rate of parental provisioning, as well as the effects on reproductive success. After three generations of selection, offspring differed in begging behaviour according to our artificial selection regime: nestlings of the high begging line begged significantly more than nestlings of the low begging line. Intriguingly, begging less benefitted the nestlings, as reflected by on average significantly higher growth rates, and increased reproductive success in terms of a higher number of fledglings in the low selected line. Begging could thus represent an exaggerated trait, possibly because parent–offspring conflict enhanced the selection on begging. We did not find evidence that we co‐selected on parental provisioning, which may be due to the lack of power, but may also suggest that the evolution of begging is probably not constrained by a genetic correlation between parental provisioning and offspring begging.  相似文献   
42.
The effect of Lactobacillus rhamnosus CRL1505 (Lr) on macrophages (Ma) and dendritic cells (DC) in the orchestration of anti-pneumococcal immunity was stud  相似文献   
43.
44.
Amino Acids - The polyamine (PA) metabolism is involved in cell proliferation and differentiation. Increased cellular PA levels are observed in different types of cancers. Products of PA oxidation...  相似文献   
45.
Severe Acute Respiratory Syndrome coronavirus 2 (SARS‐CoV‐2) is rapidly spreading around the world. There is no existing vaccine or proven drug to prevent infections and stop virus proliferation. Although this virus is similar to human and animal SARS‐CoVs and Middle East Respiratory Syndrome coronavirus (MERS‐CoVs), the detailed information about SARS‐CoV‐2 proteins structures and functions is urgently needed to rapidly develop effective vaccines, antibodies, and antivirals. We applied high‐throughput protein production and structure determination pipeline at the Center for Structural Genomics of Infectious Diseases to produce SARS‐CoV‐2 proteins and structures. Here we report two high‐resolution crystal structures of endoribonuclease Nsp15/NendoU. We compare these structures with previously reported homologs from SARS and MERS coronaviruses.  相似文献   
46.
47.
During development, cells may adjust their size to balance between the tissue metabolic demand and the oxygen and resource supply: Small cells may effectively absorb oxygen and nutrients, but the relatively large area of the plasma membrane requires costly maintenance. Consequently, warm and hypoxic environments should favor ectotherms with small cells to meet increased metabolic demand by oxygen supply. To test these predictions, we compared cell size (hindgut epithelium, hepatopancreas B cells, ommatidia) in common rough woodlice (Porcellio scaber) that were developed under four developmental conditions designated by two temperatures (15 or 22°C) and two air O2 concentrations (10% or 22%). To test whether small‐cell woodlice cope better under increased metabolic demand, the CO2 production of each woodlouse was measured under cold, normoxic conditions and under warm, hypoxic conditions, and the magnitude of metabolic increase (MMI) was calculated. Cell sizes were highly intercorrelated, indicative of organism‐wide mechanisms of cell cycle control. Cell size differences among woodlice were largely linked with body size changes (larger cells in larger woodlice) and to a lesser degree with oxygen conditions (development of smaller cells under hypoxia), but not with temperature. Developmental conditions did not affect MMI, and contrary to predictions, large woodlice with large cells showed higher MMI than small woodlice with small cells. We also observed complex patterns of sexual difference in the size of hepatopancreatic cells and the size and number of ommatidia, which are indicative of sex differences in reproductive biology. We conclude that existing theories about the adaptiveness of cell size do not satisfactorily explain the patterns in cell size and metabolic performance observed here in P. scaber. Thus, future studies addressing physiological effects of cell size variance should simultaneously consider different organismal elements that can be involved in sustaining the metabolic demands of tissue, such as the characteristics of gas‐exchange organs and O2‐binding proteins.  相似文献   
48.
Spinal muscular atrophy (SMA) is one of the major genetic disorders associated with infant mortality. More than 90% of cases of SMA result from deletions of or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2, a nearly identical copy of SMN1, does not compensate for the loss of SMN1 due to predominant skipping of exon 7. The spectrum of SMA is broad, ranging from prenatal death to infant mortality to survival into adulthood. All tissues, including brain, spinal cord, bone, skeletal muscle, heart, lung, liver, pancreas, gastrointestinal tract, kidney, spleen, ovary and testis, are directly and/or indirectly affected in SMA. Accumulating evidence on impaired mitochondrial biogenesis and defects in X chromosome-linked modifying factors, coupled with the sexual dimorphic nature of many tissues, point to sex-specific vulnerabilities in SMA. Here we review the role of sex in the pathogenesis of SMA.  相似文献   
49.
Biochemistry (Moscow) - Stress negatively affects processes of synaptic plasticity and is a major risk factor of various psychopathologies such as depression and anxiety. HOMER1 is an important...  相似文献   
50.
Biochemistry (Moscow) - Alzheimer’s disease is the most common age-related neurodegenerative disease. Understanding of its etiology and pathogenesis is constantly expanding. Thus, the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号