首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4840篇
  免费   345篇
  国内免费   5篇
  2024年   3篇
  2023年   38篇
  2022年   27篇
  2021年   159篇
  2020年   88篇
  2019年   117篇
  2018年   174篇
  2017年   116篇
  2016年   192篇
  2015年   277篇
  2014年   287篇
  2013年   355篇
  2012年   437篇
  2011年   477篇
  2010年   292篇
  2009年   233篇
  2008年   261篇
  2007年   335篇
  2006年   256篇
  2005年   234篇
  2004年   223篇
  2003年   196篇
  2002年   159篇
  2001年   41篇
  2000年   19篇
  1999年   20篇
  1998年   29篇
  1997年   19篇
  1996年   21篇
  1995年   8篇
  1994年   10篇
  1993年   7篇
  1992年   8篇
  1991年   11篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   5篇
  1985年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   2篇
  1977年   3篇
  1976年   4篇
  1974年   3篇
  1971年   6篇
  1959年   1篇
  1958年   1篇
排序方式: 共有5190条查询结果,搜索用时 15 毫秒
991.
992.
The Binax and the Biotest urinary antigen kits for detection of L. pneumophila antigen were compared by testing of selected 67 urine samples obtained from EWGLI as reference samples in External Quality Assessment Scheme. Thirty nine were positive with the Binax kit (100% of sensitivity), and 33 were positive with the Biotest (84.6% of sensitivity). The test specificities were 100% for the both kits. It was concluded that the Binax kit was more suitable for the routine diagnosis of Legionella infections than the Biotest kit.  相似文献   
993.
Cyanobacterial NADPH:plastoquinone oxidoreductase, or type I NAD(P)H dehydrogenase, or the NDH-1 complex is involved in plastoquinone reduction and cyclic electron transfer (CET) around photosystem I. CET, in turn, produces extra ATP for cell metabolism particularly under stressful conditions. Despite significant achievements in the study of cyanobacterial NDH-1 complexes during the past few years, the entire subunit composition still remains elusive. To identify missing subunits, we screened a transposon-tagged library of Synechocystis 6803 cells grown under high light. Two NDH-1-mediated CET (NDH-CET)-defective mutants were tagged in the same ssl0352 gene encoding a short unknown protein. To clarify the function of Ssl0352, the ssl0352 deletion mutant and another mutant with Ssl0352 fused to yellow fluorescent protein (YFP) and the His(6) tag were constructed. Immunoblotting, mass spectrometry, and confocal microscopy analyses revealed that the Ssl0352 protein resides in the thylakoid membrane and associates with the NDH-1L and NDH-1M complexes. We conclude that Ssl0352 is a novel subunit of cyanobacterial NDH-1 complexes and designate it NdhS. Deletion of the ssl0352 gene considerably impaired the NDH-CET activity and also retarded cell growth under high light conditions, indicating that NdhS is essential for efficient operation of NDH-CET. However, the assembly of the NDH-1L and NDH-1M complexes and their content in the cells were not affected in the mutant. NdhS contains a Src homology 3-like domain and might be involved in interaction of the NDH-1 complex with an electron donor.  相似文献   
994.
995.
A limited decrease in mitochondrial membrane potential can be beneficial for cells, especially under some pathological conditions, suggesting that mild uncouplers (protonophores) causing such an effect are promising candidates for therapeutic uses. The great majority of protonophores are weak acids capable of permeating across membranes in their neutral and anionic forms. In the present study, protonophorous activity of a series of derivatives of cationic rhodamine 19, including dodecylrhodamine (C(12)R1) and its conjugate with plastoquinone (SkQR1), was revealed using a variety of assays. Derivatives of rhodamine B, lacking dissociable protons, showed no protonophorous properties. In planar bilayer lipid membranes, separating two compartments differing in pH, diffusion potential of H(+) ions was generated in the presence of C(12)R1 and SkQR1. These compounds induced pH equilibration in liposomes loaded with the pH probe pyranine. C(12)R1 and SkQR1 partially stimulated respiration of rat liver mitochondria in State 4 and decreased their membrane potential. Also, C(12)R1 partially stimulated respiration of yeast cells but, unlike the anionic protonophore FCCP, did not suppress their growth. Loss of function of mitochondrial DNA in yeast (grande-petite transformation) is known to cause a major decrease in the mitochondrial membrane potential. We found that petite yeast cells are relatively more sensitive to the anionic uncouplers than to C(12)R1 compared with grande cells. Together, our data suggest that rhodamine 19-based cationic protonophores are self-limiting; their uncoupling activity is maximal at high membrane potential, but the activity decreases membrane potentials, which causes partial efflux of the uncouplers from mitochondria and, hence, prevents further membrane potential decrease.  相似文献   
996.
997.
The gastric peptide ghrelin promotes energy storage, appetite, and food intake. Nutrient intake strongly suppresses circulating ghrelin via molecular mechanisms possibly involving insulin and gastrointestinal hormones. On the basis of the growing evidence that glucose-dependent insulinotropic polypeptide (GIP) is involved in the control of fuel metabolism, we hypothesized that GIP and/or insulin, directly or via changes in plasma metabolites, might affect circulating ghrelin. Fourteen obese subjects were infused with GIP (2.0 pmol·kg(-1)·min(-1)) or placebo in the fasting state during either euglycemic hyperinsulinemic (EC) or hyperglycemic hyperinsulinemic clamps (HC). Apart from analysis of plasma ghrelin and insulin levels, GC-TOF/MS analysis was applied to create a hormone-metabolite network for each experiment. The GIP and insulin effects on circulating ghrelin were analyzed within the framework of those networks. In the HC, ghrelin levels decreased in the absence (19.2% vs. baseline, P = 0.028) as well as in the presence of GIP (33.8%, P = 0.018). Ghrelin levels were significantly lower during HC with GIP than with placebo, despite insulin levels not differing significantly. In the GIP network combining data on GIP-infusion, EC+GIP and HC+GIP experiments, ghrelin was integrated into hormone-metabolite networks through a connection to a group of long-chain fatty acids. In contrast, ghrelin was excluded from the network of experiments without GIP. GIP decreased circulating ghrelin and might have affected the ghrelin system via modification of long-chain fatty acid pools. These observations were independent of insulin and offer potential mechanistic underpinnings for the involvement of GIP in systemic control of energy metabolism.  相似文献   
998.
Causal connections between dipeptidyl peptidase IV, also known as CD26 molecule (DPP IV/CD26) and inflammatory bowel disease (IBD) have been shown, but mechanisms of these interactions are unclear. Our hypothesis was that DPP IV/CD26 could affect the neuroimmune response during inflammatory events. Therefore, we aimed to evaluate its possible role and the relevance of the gut-brain axis in a model of IBD in mice. Trinitrobenzenesulfonic acid-induced (TNBS) colitis was induced in CD26-deficient (CD26(-/-) ) and wild-type (C57BL/6) mice. Pathohistological and histomorphometrical measurements were done. Concentrations and protein expressions of DPP IV/CD26 substrates neuropeptide Y (NPY) and vasoactive intestinal peptide (VIP) were determined. Concentrations of IL-6 and IL-10 were evaluated. Investigations were conducted at systemic and local levels. Acute inflammation induced increased serum NPY concentrations in both mice strains, more enhanced in CD26(-/-) mice. Increased NPY concentrations were found in colon and brain of C57BL/6 mice, while in CD26(-/-) animals only in colon. VIP and IL-6 serum and tissue concentrations were increased in both mice strains in acute inflammation, more pronouncedly in CD26(-/-) mice. IL-10 concentrations, after a decrease in serum of both mice strains, increased promptly in CD26(-/-) mice. Decreased IL-10 concentration was found in brain of C57BL/6 mice, while it was increased in colon of CD26(-/-) mice in acute inflammation. DPP IV/CD26 deficiency affects the neuroimmune response at systemic and local levels during colitis development and resolution in mice. Inflammatory changes in the colon reflected on investigated parameters in the brain, suggesting an important role of the gut-brain axis in IBD pathogenesis.  相似文献   
999.
We have studied the seasonal dynamics of abundance and feeding characteristics of three species of calanoid copepods (Acartia spp., Centropages hamatus and Temora longicornis) in the White Sea from the surface water layer (0–10 m), in order to assess their role in the pelagic food web and to determine the major factors governing their population dynamics during the productive season. These species dominated in the upper water layer (0–10 m) from June through September, producing up to 3 generations per year. Data on the food spectra revealed all species to be omnivorous; but some inter- and intraspecific differences were observed. Generally, copepods consumed diatoms, dinoflagellates and microzooplankton. The omnivory index ‘UC’ (i.e., fatty acid unsaturation coefficient) varied from 0.2 to 0.6, which implied ingestion of phytoplankton. The different degree of selectivity on the same food items by the studied species was observed, and therefore, successful surviving strategy with minimal overlapping could be assumed. In total, the populations of the three studied copepod species grazed up to 2.15 g C m−2 day−1 and released up to 0.68 g C m−2 day−1 in faecal pellets. They consumed up to 50% of particulate organic carbon, or up to 85% of phytoplankton standing stock (in terms of Chl. a), and thus played a significant role in the transformation of particulate organic matter. Seasonal changes in abundance of the studied species depended mostly on water temperature in the early summer, but were also affected by food availability (Chl. a concentration) during the productive season.  相似文献   
1000.
Although bacteria of the genus Shewanella belong to one of the readily cultivable groups of "Gammaproteobacteria", little is known about the occurrence and abundance of these microorganisms in the marine ecosystem. Studies revealed that of 654 isolates obtained from marine invertebrates (ophiuroid Amphiopholis kochii, sipuncula Phascolosoma japonicum, and holothurian Apostichopus japonicus, Cucumaria japonica), seawater and sediments of the North-West Pacific Ocean (i.e. the Sea of Japan and Iturup Is, Kurile Islands), 10.7% belonged to the genus Shewanella. The proportion of viable Shewanella species varied from 4% to 20% depending on the source of isolation. From the isolation study, representative strains of different phenotypes (from seventy presumptive Shewanella strains) were selected for detailed characterization using phenotypic, chemotaxonomic, and phylogenetic testing. 16S rDNA sequence-based phylogenetic analysis confirmed the results of tentative identification and placed the majority of these strains within only a few species of the genus Shewanella with 98-99% of 16S rDNA sequences identity mainly with S. japonica and S. colwelliana, suggesting that the strains studied might belong to these species. Numerically dominant strains of S. japonica were metabolically active and produced proteinases (gelatinases, caseinases), lipases, amylases, agarases, and alginases. Shewanella strains studied demonstrated weak antimicrobial and antifungal activities that might be an indication of their passive role in the colonization on living and non-living surfaces.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号