首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   251篇
  免费   22篇
  2021年   4篇
  2019年   5篇
  2018年   10篇
  2017年   6篇
  2016年   7篇
  2015年   10篇
  2014年   5篇
  2013年   18篇
  2012年   13篇
  2011年   23篇
  2010年   11篇
  2009年   8篇
  2008年   12篇
  2007年   20篇
  2006年   13篇
  2005年   12篇
  2004年   10篇
  2003年   11篇
  2002年   11篇
  2001年   4篇
  2000年   5篇
  1999年   8篇
  1998年   4篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1954年   1篇
  1931年   1篇
  1928年   1篇
排序方式: 共有273条查询结果,搜索用时 31 毫秒
81.
Clumping factor B (ClfB) from Staphylococcus aureus is a bifunctional protein that binds to human cytokeratin 10 (K10) and fibrinogen (Fg). ClfB has been implicated in S. aureus colonization of nasal epithelium and is therefore a key virulence factor. People colonized with S. aureus are at an increased risk for invasive staphylococcal disease. In this study, we have determined the crystal structures of the ligand-binding region of ClfB in an apo-form and in complex with human K10 and Fg α-chain-derived peptides, respectively. We have determined the structures of MSCRAMM binding to two ligands with different sequences in the same site showing the versatile nature of the ligand recognition mode of microbial surface components recognizing adhesive matrix molecules. Both ligands bind ClfB by parallel β-sheet complementation as observed for the clumping factor A·γ-chain peptide complex. The β-sheet complementation is shorter in the ClfB·Fg α-chain peptide complex. The structures show that several residues in ClfB are important for binding to both ligands, whereas others only make contact with one of the ligands. A common motif GSSGXG found in both ligands is part of the ClfB-binding site. This motif is found in many human proteins thus raising the possibility that ClfB recognizes additional ligands.  相似文献   
82.
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease leading to inflammatory tissue damage in multiple organs (e.g., lupus nephritis). Current treatments including steroids, antimalarials, and immunosuppressive drugs have significant side effects. Activated protein C is a natural protein with anticoagulant and immunomodulatory effects, and its recombinant version has been approved by the U.S. Food and Drug Administration to treat severe sepsis. Given the similarities between overshooting immune activation in sepsis and autoimmunity, we hypothesized that recombinant activated protein C would also suppress SLE and lupus nephritis. To test this concept, autoimmune female MRL-Fas(lpr) mice were injected with either vehicle or recombinant human activated protein C from week 14-18 of age. Activated protein C treatment significantly suppressed lupus nephritis as evidenced by decrease in activity index, glomerular IgG and complement C3 deposits, macrophage counts, as well as intrarenal IL-12 expression. Further, activated protein C attenuated cutaneous lupus and lung disease as compared with vehicle-treated MRL-Fas(lpr) mice. In addition, parameters of systemic autoimmunity, such as plasma cytokine levels of IL-12p40, IL-6, and CCL2/MCP-1, and numbers of B cells and plasma cells in spleen were suppressed by activated protein C. The latter was associated with lower total plasma IgM and IgG levels as well as lower titers of anti-dsDNA IgG and rheumatoid factor. Together, recombinant activated protein C suppresses the abnormal systemic immune activation in SLE of MRL-Fas(lpr) mice, which prevents subsequent kidney, lung, and skin disease. These results implicate that recombinant activated protein C might be useful for the treatment of human SLE.  相似文献   
83.
The Gram-positive pathogen Streptococcus agalactiae, known as group B Streptococcus (GBS), is the leading cause of bacterial septicemia, pneumonia, and meningitis among neonates. GBS assembles two types of pili—pilus islands (PIs) 1 and 2—on its surface to adhere to host cells and to initiate colonization for pathogenesis. The GBS PI-1 pilus is made of one major pilin, GBS80, which forms the pilus shaft, and two secondary pilins, GBS104 and GBS52, which are incorporated into the pilus at various places. We report here the crystal structure of the 35-kDa C-terminal fragment from GBS80, which is composed of two IgG-like domains (N2-N3). The structure was solved by single-wavelength anomalous dispersion using sodium-iodide-soaked crystals and diffraction data collected at the home source. The N2 domain exhibits a cnaA/DEv-IgG fold with two calcium-binding sites, while the N3 domain displays a cnaB/IgG-rev fold. We have built a model for full-length GBS80 (N1, N2, and N3) with the help of available homologous major pilin structures, and we propose a model for the GBS PI-1 pilus shaft. The N2 and N3 domains are arranged in tandem along the pilus shaft, whereas the respective N1 domain is tilted by approximately 20° away from the pilus axis. We have also identified a pilin-like motif in the minor pilin GBS52, which might aid its incorporation at the pilus base.  相似文献   
84.
In this study we characterize two novel chloroplast SufE-like proteins from Arabidopsis thaliana. Other SufE-like proteins, including the previously described A. thaliana CpSufE, participate in sulfur mobilization for Fe-S biosynthesis through activation of cysteine desulfurization by NifS-like proteins. In addition to CpSufE, the Arabidopsis genome encodes two other proteins with SufE domains, SufE2 and SufE3. SufE2 has plastid targeting information. Purified recombinant SufE2 could activate the cysteine desulfurase activity of CpNifS 40-fold. SufE2 expression was flower-specific and high in pollen; we therefore hypothesize that SufE2 has a specific function in pollen Fe-S cluster biosynthesis. SufE3, also a plastid targeted protein, was expressed at low levels in all major plant organs. The mature SufE3 contains two domains, one SufE-like and one with similarity to the bacterial quinolinate synthase, NadA. Indeed SufE3 displayed both SufE activity (stimulating CpNifS cysteine desulfurase activity 70-fold) and quinolinate synthase activity. The full-length protein was shown to carry a highly oxygen-sensitive (4Fe-4S) cluster at its NadA domain, which could be reconstituted by its own SufE domain in the presence of CpNifS, cysteine and ferrous iron. Knock-out of SufE3 in Arabidopsis is embryolethal. We conclude that SufE3 is the NadA enzyme of A. thaliana, involved in a critical step during NAD biosynthesis.  相似文献   
85.
The shoot apical meristem (SAM) produces lateral organs in a regular spacing (phyllotaxy) and at a regular interval (phyllochron) during the vegetative phase. In a Dissociation (Ds) insertion rice population, we identified a mutant, compact shoot and leafy head 1 (csl1), which produced massive number of leaves (∼70) during the vegetative phase. In csl1, the transition from the vegetative to the reproductive phase was delayed by about 2 months under long-day conditions. With a reduced leaf size and severe dwarfism, csl1 failed to produce a normal panicle after the transition to reproductive growth. Instead, it produced a leafy panicle, in which all primary rachis-branches were converted to vegetative shoots. Phenotypically csl1 resembled pla mutants in short plastochron but was more severe in the conversion of the reproductive organs to vegetative organs. In addition, neither the expression nor the coding region of PLA1 or PLA2 was affected in csl1. csl1 is most likely a dominant mutation because no mutant segregant was observed in progeny of 67 siblings of the csl1 mutant. CSL1 may represent a novel gene, which functions downstream of PLA1 and/or PLA2, or alternatively functions in a separate pathway, involved in the regulation of leaf initiation and developmental transition via plant hormones or other mobile signals.  相似文献   
86.
The aim of this study was to develop and optimize silverleaf bioassay, esterase analysis and PCR-based techniques to distinguish quickly and reliably biotype B of the whitefly, Bemisia tabaci (Gennadius), from Indian indigenous biotypes. Zucchini and squash readily develop silverleaf symptoms upon feeding by the B biotype, but they are not readily available in Indian markets. A local pumpkin variety 'Big' was, therefore, used in silverleaf assay, which developed symptoms similar to those on zucchini and squash and can be used reliably to detect B biotype. Analysis of non-specific esterases of B and the indigenous biotypes indicated both quantitative and qualitative differences in esterase patterns. Two high molecular weight bands were unique to B biotype and they occurred in abundance. These esterases were used to develop quick and field-based novel detection methods for differentiating B from the indigenous biotypes. Development of these simple and cost-effective protocols has wider application as they can be potentially used to identify other agricultural pests. Mitochondrial cytochrome oxidase I gene sequences and randomly amplified polymorphic DNA (RAPD) polymorphisms, generated using the primer OpB11, were also found useful for detecting B. tabaci biotypes. A B biotype-specific RAPD band of 800 bp was sequenced, which was used to a develop sequence characterized amplified region (SCAR) marker. The SCAR marker involved the development of B biotype-specific primers that amplified 550 bp PCR products only from B biotype genomic DNA. Silverleaf assay, esterases, RAPDs or a SCAR marker were used in combination to analyse whitefly samples collected from selected locations in India, and it was found that any of these techniques can be used singly or in combination to detect B biotype reliably. The B biotype was found in southern parts of India but not in the north in 2004-06.  相似文献   
87.
88.
The primary structure of a protein molecule comprises a linear chain of amino acid residues. Certain parts of this linear chain are unique in nature and function. They can be classified under different categories and their roles studied in detail. Two such unique categories are the palindromic sequences and the Single Amino Acid Repeats (SAARs), which plays a major role in the structure, function and evolution of the protein molecule. In spite of their presence in various protein sequences, palindromes have not yet been investigated in detail. Thus, to enable a comprehensive understanding of these sequences, a computing engine, PPS, has been developed. The users can search the occurrences of palindromes and SAARs in all the protein sequences available in various databases and can view the three-dimensional structures (in case it is available in the known three-dimensional protein structures deposited to the Protein Data Bank) using the graphics plug-in Jmol. The proposed server is the first of its kind and can be freely accessed through the World Wide Web.

Availability

URL http://pranag.physics.iisc.ernet.in/pps/  相似文献   
89.
Many surface proteins of Gram-positive bacteria, which play important roles during the pathogenesis of human infections, are anchored to the cell wall envelope by a mechanism requiring sortases. Sortase B, a cysteine transpeptidase from Staphylococcus aureus, cleaves the C-terminal sorting signal of IsdC at the NPQTN motif and tethers the polypeptide to the pentaglycine cell wall cross-bridge. During catalysis, the active site cysteine of sortase and the cleaved substrate form an acyl intermediate, which is then resolved by the amino group of pentaglycine cross-bridges. We report here the crystal structures of SrtBDeltaN30 in complex with two active site inhibitors, MTSET and E64, and with the cell wall substrate analog tripleglycine. These structures reveal, for the first time, the active site disposition and the unique Cys-Arg catalytic machinery of the cysteine transpeptidase, and they also provide useful information for the future design of anti-infective agents against sortases.  相似文献   
90.
Staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 are the super antigens responsible for diseases such as staphylococcal food poisoning and toxic shock syndrome. At low serum concentrations, SEB can trigger toxic shock, profound hypotension and multi organ failure and hence is recognized as biowarfare molecule. In this study, a multidomain fusion protein (r-TE) was generated with specificity for SEB and toxic shock syndrome toxin (Tsst-1). The fusion gene comprising the conserved regions of seb and the tsst genes was codon-optimized for expression in Escherichia coli and encoded a 26 kDa recombinant multidomain chimeric protein (r-TE). Hyperimmune antiserum raised against r-TE specifically reacted with SEB (~28 kDa) and Tsst-1 (~22 kDa) components during Western blot analysis and by plate ELISA in confirmed toxin producing strains of S. aureus. The antigenicity of the SEB component of the r-TE protein was also confirmed using TECRA kit. The described procedure of creating a single protein molecule carrying components of two different toxins whilst still retaining the original antigenic determinants of individual toxins proved highly advantageous in the development of rapid, reliable and cost effective immunoassays and may also have the potential to serve as candidate molecule for vaccine studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号