首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4232篇
  免费   220篇
  国内免费   1篇
  2023年   14篇
  2022年   10篇
  2021年   67篇
  2020年   43篇
  2019年   43篇
  2018年   76篇
  2017年   67篇
  2016年   87篇
  2015年   154篇
  2014年   188篇
  2013年   273篇
  2012年   290篇
  2011年   303篇
  2010年   167篇
  2009年   170篇
  2008年   276篇
  2007年   268篇
  2006年   253篇
  2005年   236篇
  2004年   272篇
  2003年   234篇
  2002年   215篇
  2001年   63篇
  2000年   50篇
  1999年   71篇
  1998年   42篇
  1997年   43篇
  1996年   34篇
  1995年   37篇
  1994年   40篇
  1993年   28篇
  1992年   38篇
  1991年   32篇
  1990年   31篇
  1989年   28篇
  1988年   21篇
  1987年   16篇
  1986年   17篇
  1985年   21篇
  1984年   17篇
  1983年   18篇
  1982年   16篇
  1981年   12篇
  1980年   11篇
  1979年   10篇
  1978年   7篇
  1977年   8篇
  1975年   6篇
  1974年   6篇
  1973年   6篇
排序方式: 共有4453条查询结果,搜索用时 484 毫秒
961.
962.
963.
964.
965.
Musculocontractural Ehlers-Danlos syndrome (mcEDS) due to CHST14/D4ST1 deficiency (mcEDS-CHST14) is a recently delineated type of EDS caused by biallelic loss-of-function mutations in CHST14, which results in the depletion of dermatan sulfate (DS). Clinical characteristics of mcEDS-CHST14 consist of multiple malformations and progressive fragility-related manifestations, including skin hyperextensibility and fragility. Skin fragility is suspected to result from the impaired assembly of collagen fibrils caused by alteration of the glycosaminoglycan (GAG) chain of decorin-proteoglycan (PG) from DS to chondroitin sulfate (CS). This systematic investigation of the skin pathology of patients with mcEDS-CHST14 comprised both immunostaining of decorin and transmission electron microscopy-based cupromeronic blue staining to visualize GAG chains. Collagen fibrils were dispersed in the affected papillary to reticular dermis; in contrast, they were regularly and tightly assembled in controls. Moreover, the fibrils exhibited a perpendicular arrangement to the affected epidermis, whereas fibrils were parallel to control epidermis. Affected GAG chains were linear, stretching from the outer surface of collagen fibrils to adjacent fibrils; in contrast, those of controls were curved, maintaining close contact with attached collagen fibrils. This is the first observation of compositional alteration, from DS to CS, of GAG side chains, which caused structural alteration of GAG side chains and resulted in spatial disorganization of collagen networks; this presumably disrupted the ring-mesh structure of GAG side chains surrounding collagen fibrils. McEDS-CHST14 provides a critical example of the importance of DS in GAG side chains of decorin-PG during assembly of collagen fibrils in maintenance of connective tissues.  相似文献   
966.
The effects of polyclonal B cell activation (PBA) of cell walls and their cell wall fractions obtained from several kinds of gram-positive bacteria were studied using the anti-sheep red blood cell (SRBC) or anti-trinitrophenylated (TNP) SRBC plaque forming cell (PFC) responses of cultured spleen cells from Balb/c, athymic nu/nu, their littermates (nu/+), C3H/He (LPS-responder), C3H/HeJ (LPS-non-responder), (CBA/N × Balb/c) F1 male with an X-linked defect in B cell function and the F1 female mice. The cell walls of Staphylococcus epidermidis (ATCC 155), Lactobacillus plantarum (ATCC 8014), Micrococcus lysodeikticus (NCTC 2665), Mycobacterium rhodochrous (ATCC 184), Streptomyces gardneri (ATCC 23911) and Nocardia corynebacteriodes (ATCC 14898) had the ability to induce polyclonal B cell responses in the spleen cells of Balb/c, nu/nu, nu/+, C3H/He and C3H/HeJ mice. The cell wall fractions prepared by enzymatic digestion from the cell walls of S. epidermidis, S. gardneri or N. corynebacteriodes were also capable of inducing polyclonal B cell responses. The responses of spleen cells from (CBA/N × Balb/c) F1 male mice to these active preparations, except the cell walls of M. rhodochrous, were much lower than those of the F1 female mice. These findings indicate that the majority of the cell wall preparations lacks PBA ability for spleen cells with the CBA/N defect, except for the cell walls of M. rhodochrous which possess this ability. The PBA-ability of synthetic peptidoglycan, muramyl dipeptide (N-acetylmuramyl-L -alanyl-D -isoglutamine, MDP), was also examined, and a similar activity was observed in MDP.  相似文献   
967.
Summary Ethylene stimulated growth of rice coleoptiles in the dark and after an irradiation with red light. The red-light inhibition of rice-coleoptile growth was more pronounced when only endogenously evolved C2H4 was involved than it was under C2H4-free (C2H4 removed) or C2H4-saturated (20 ppm C2H4 added) conditions.  相似文献   
968.
BackgroundThe expressions of genes related to lipid metabolism are decreased in adipocytes with insulin resistance. In this study, we examined the effects of fatty acids on the reduced expressions and histone acetylation of lipid metabolism-related genes in 3T3-L1 adipocytes treated with insulin resistance induced by tumor necrosis factor (TNF)-α.MethodsShort-, medium-, and long-chain fatty acid were co-administered with TNF-α in 3T3-L1 adipocytes. Then, mRNA expressions and histone acetylation of genes involved in lipid metabolism were determined using mRNA microarrays, qRT-PCR, and chromatin immunoprecipitation assays.ResultsWe found in microarray and subsequent qRT-PCR analyses that the expression levels of several lipid metabolism-related genes, including Gpd1, Cidec, and Cyp4b1, were reduced by TNF-α treatment and restored by co-treatment with a short-chain fatty acid (C4: butyric acid) and medium-chain fatty acids (C8: caprylic acid and C10: capric acid). The pathway analysis of the microarray showed that capric acid enhanced mRNA levels of genes in the PPAR signaling pathway and adipogenesis genes in the TNF-α-treated adipocytes. Histone acetylation around Cidec and Gpd1 genes were also reduced by TNF-α treatment and recovered by co-administration with short- and medium-chain fatty acids.General significanceMedium- and short-chain fatty acids induce the expressions of Cidec and Gpd1, which are lipid metabolism-related genes in insulin-resistant adipocytes, by promoting histone acetylation around these genes.  相似文献   
969.
The main lesion of cisplatin nephrotoxicity is damage to proximal tubular cells due to increased apoptosis via the mitochondrial and death receptor pathways, which may be alleviated by appropriate promotion of autophagy. Fenofibrate, a peroxisome proliferator-activated receptor-alpha (PPAR-α) activator, is recently reported to promote autophagy as well as protect against cisplatin nephrotoxicity, although the mechanisms were only partially analyzed. Here, the detailed mechanisms of these putative protective effects were investigated in a murine renal proximal tubular (mProx) cell line. Fenofibrate attenuated cisplatin-induced apoptosis of mProx cells based on flow cytometry. As for the mitochondrial apoptotic pathway, the reagent reduced cisplatin-stimulated caspase-3 activation by decreasing the phosphorylation of p53, JNK, and 14-3-3, cytosolic and mitochondrial Puma accumulation, cytochrome C release to the cytosol, and resulting cytosolic caspase-9 activation. Fenofibrate also decreased cisplatin-stimulated activation of caspases-8 by suppressing MAPK and NFkB pathways and reducing the gene expression of TNF-α, TL1A, and Fas, main mediators of the death receptor apoptotic pathway. Autophagy defined by p62 reduction and an increase in LC3 II/I was promoted by fenofibrate in mProx cells under starvation. Autophagy inhibition using 3-MA further increased basal and cisplatin-induced caspase-3 and -8 activation, but had no influence on the inhibitory effects of fenofibrate on caspase activation. In conclusion, our study suggests fenofibrate to be a candidate agent to mitigate cisplatin nephrotoxicity by inhibiting the mitochondrial and death apoptotic pathways rather than by promoting autophagy.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号