首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   18篇
  2023年   1篇
  2022年   3篇
  2021年   6篇
  2020年   3篇
  2019年   5篇
  2018年   5篇
  2017年   5篇
  2016年   3篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   16篇
  2011年   13篇
  2010年   8篇
  2009年   4篇
  2008年   17篇
  2007年   8篇
  2006年   5篇
  2005年   5篇
  2004年   13篇
  2003年   12篇
  2002年   7篇
  2001年   6篇
  2000年   8篇
  1999年   4篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1992年   1篇
  1990年   1篇
  1975年   1篇
排序方式: 共有193条查询结果,搜索用时 31 毫秒
21.
The metabolic pathways leading to the synthesis of bacterial glycogen involve the action of several enzymes, among which glycogen synthase (GS) catalyzes the elongation of the α-1,4-glucan. GS from Agrobacterium tumefaciens uses preferentially ADPGlc, although UDPGlc can also be used as glycosyl donor with less efficiency. We present here a continuous spectrophotometric assay for the determination of GS activity using ADP- or UDPGlc. When ADPGlc was used as the substrate, the production of ADP is coupled to NADH oxidation via pyruvate kinase (PK) and lactate dehydrogenase (LDH). With UDPGlc as substrate, UDP was converted to ADP via adenylate kinase and subsequent coupling to PK and LDH reactions. Using this assay, we determined the kinetic parameters of GS and compared them with those obtained with the classical radiochemical method. For this purpose, we improved the expression procedure of A. tumefaciens GS using Escherichia coli BL21(DE3)-RIL cells. This assay allows the continuous monitoring of glycosyltransferase activity using ADPGlc or UDPGlc as sugar-nucleotide donors.  相似文献   
22.
Collapsin response mediator protein 2 (CRMP-2), traditionally viewed as an axon/dendrite specification and axonal growth protein, has emerged as nidus in regulation of both pre- and post-synaptic Ca2+ channels. Building on our discovery of the interaction and regulation of Ca2+ channels by CRMP-2, we recently identified a short sequence in CRMP-2 which, when appended to the transduction domain of HIV TAT protein, suppressed acute, inflammatory and neuropathic pain in vivo by functionally uncoupling CRMP-2 from the Ca2+ channel. Remarkably, we also found that this region attenuated Ca2+ influx via N-methylD-Aspartate receptors (NMDARs) and reduced neuronal death in a moderate controlled cortical impact model of traumatic brain injury (TBI). Here, we sought to extend these findings by examining additional neuroprotective effects of this peptide (TAT-CBD3) and exploring the biochemical mechanisms by which TAT-CBD3 targets NMDARs. We observed that an intraperitoneal injection of TAT-CBD3 peptide significantly reduced infarct volume in an animal model of focal cerebral ischemia. Neuroprotection was observed when TAT-CBD3 peptide was given either prior to or after occlusion but just prior to reperfusion. Surprisingly, a direct biochemical complex was not resolvable between the NMDAR subunit NR2B and CRMP-2. Intracellular application of TAT-CBD3 failed to inhibit NMDAR current. NR2B interactions with the post synaptic density protein 95 (PSD-95) remained intact and were not disrupted by TAT-CBD3. Peptide tiling of intracellular regions of NR2B revealed two 15-mer sequences, in the carboxyl-terminus of NR2B, that may confer binding between NR2B and CRMP-2 which supports CRMP-2''s role in excitotoxicity and neuroprotection.  相似文献   
23.
N-type channels are located on dendrites and at pre-synaptic nerve terminals where they play a fundamental role in neurotransmitter release. They are potently regulated by the activation of a number of different types of pertussis toxin (PTX)-sensitive G alpha(i/o) coupled receptors, which results in voltage-dependent inhibition of channel activity via G betagamma subunits. Using heterologous expression in HEK 293T cells, we show via whole cell patch clamp recordings that D2 receptors mediate both G betagamma (i.e., voltage-dependent) and voltage-independent inhibition of channel activity. Furthermore, using co-immunoprecipitation and pull down assays involving the intracellular regions of each protein, we show that D2 receptors and N-type channels form physical signaling complexes. Finally, we use confocal microscopy to demonstrate that D2 receptors regulate N-type channel trafficking to affect the number of calcium channels available at the plasma membrane. Taken together, these data provide evidence for multiple voltage-dependent and voltage-independent mechanisms by which D2 receptor subtypes influence N-type channel activity.  相似文献   
24.
Voltage-gated Ca(2+) channels are responsible for the activation of the Ca(2+) influx that triggers exocytotic secretion. The synaptic protein interaction (synprint) site found in the II-III loop of Ca(V)2.1 and Ca(V)2.2 mediates a physical association with synaptic proteins that may be crucial for fast neurotransmission and axonal targeting. We report here the use of nested PCR to identify two novel splice variants of rat Ca(V)2.1 that lack much of the synprint site. Furthermore, we compare immunofluorescence data derived from antibodies directed against sequences in the Ca(V)2.1 synprint site and carboxyl terminus to show that channel variants lacking a portion of the synprint site are expressed in two types of neuroendocrine cells. Immunofluorescence data also suggest that such variants are properly targeted to neuroendocrine terminals. When expressed in a mammalian cell line, both splice variants yielded Ca(2+) currents, but the variant containing the larger of the two deletions displayed a reduced current density and a marked shift in the voltage dependence of inactivation. These results have important implications for Ca(V)2.1 function and for the mechanisms of Ca(V)2.1 targeting in neurons and neuroendocrine cells.  相似文献   
25.
Constitutively active G-protein-coupled receptors (GPCRs) can signal even in the absence of ligand binding. Most Class I GPCRs are stabilized in the resting conformation by intramolecular interactions involving transmembrane domain (TM) 3 and TM6, particularly at loci 6.30 and 6.34 of TM6. Signaling by Gi/Go-coupled receptors such as the Neuropeptide Y1 receptor decreases already low basal metabolite levels. Thus, we examined constitutive activity using a biochemical assay mediated by a Gi/Gq chimeric protein and a more direct electrophysiological assay. Wild-type (WT-Y1) receptors express no measurable, agonist-independent activation, while mu-opioid receptors (MOR) and P2Y12 purinoceptors showed clear evidence of constitutive activation, especially in the electrophysiological assay. Neither point mutations at TM6 (T6.30A or N6.34A) nor substitution of the entire TM3 and TM6 regions from the MOR into the Y1 receptor increased basal WT-Y1 activation. By contrast, chimeric substitution of the third intracellular loop (ICL3) generated a constitutively active, Y1-ICL3-MOR chimera. Furthermore, the loss of stabilizing interactions from the native ICL3 enhanced the role of surrounding residues to permit basal receptor activation; because constitutive activity of the Y1-ICL3-MOR chimera was further increased by point mutation at locus 6.34, which did not alter WT-Y1 receptor activity. Our results indicate that the ICL3 stabilizes the Y1 receptor in the inactive state and confers structural properties critical for regulating Y receptor activation and signal transduction. These studies reveal the active participation of the ICL3 in the stabilization and activation of Class I GPCRs.  相似文献   
26.
It is well established that misfolded forms of cellular prion protein (PrP [PrP(C)]) are crucial in the genesis and progression of transmissible spongiform encephalitis, whereas the function of native PrP(C) remains incompletely understood. To determine the physiological role of PrP(C), we examine the neurophysiological properties of hippocampal neurons isolated from PrP-null mice. We show that PrP-null mouse neurons exhibit enhanced and drastically prolonged N-methyl-d-aspartate (NMDA)-evoked currents as a result of a functional upregulation of NMDA receptors (NMDARs) containing NR2D subunits. These effects are phenocopied by RNA interference and are rescued upon the overexpression of exogenous PrP(C). The enhanced NMDAR activity results in an increase in neuronal excitability as well as enhanced glutamate excitotoxicity both in vitro and in vivo. Thus, native PrP(C) mediates an important neuroprotective role by virtue of its ability to inhibit NR2D subunits.  相似文献   
27.
Streptococcus suis is a major swine pathogen and emerging zoonotic agent. In this study we have determined the muropeptide composition of S. suis peptidoglycan (PG) and found, among other modifications, N-deacetylated compounds. Comparison with an isogenic mutant showed that the product of the pgdA gene is responsible for this specific modification which occurred in very low amounts. Low level of PG N-deacetylation correlated with absence of significant lysozyme resistance when wild-type S. suis was grown in vitro. On the other hand, expression of the pgdA gene was increased upon interaction of the bacterium with neutrophils in vitro as well as in vivo in experimentally inoculated mice, suggesting that S. suis may enhance PG N-deacetylation under these conditions. Evaluation of the DeltapgdA mutant in both the CD1 murine and the porcine models of infection revealed a significant contribution of the pgdA gene to the virulence traits of S. suis. Reflecting a severe impairment in its ability to persist in blood and decreased ability to escape immune clearance mechanisms mediated by neutrophils, the DeltapgdA mutant was highly attenuated in both models. The results of this study suggest that modification of PG by N-deacetylation is an important factor in S. suis virulence.  相似文献   
28.
R13X derivatives of μ-conotoxin GIIIA bind externally to single sodium channels and block current incompletely with mean “blocked” durations of several seconds. We studied interactions between two classes of blockers (μ-conotoxins and amines) by steady state, kinetic analysis of block of BTX-modified Na channels in planar bilayers. The amines cause all-or-none block at a site internal to the selectivity filter. TPrA and DEA block single Na channels with very different kinetics. TPrA induces discrete, all-or-none, blocked events (mean blocked durations, ∼100 ms), whereas DEA produces a concentration-dependent reduction of the apparent single channel amplitude (“fast” block). These distinct modes of action allow simultaneous evaluation of block by TPrA and DEA, showing a classical, competitive interaction between them. The apparent affinity of TPrA decreases with increasing [DEA], based on a decrease in the association rate for TPrA. When an R13X μ-conotoxin derivative and one of the amines are applied simultaneously on opposite sides of the membrane, a mutually inhibitory interaction is observed. Dissociation constants, at +50 mV, for TPrA (∼4 mM) and DEA (∼30 mM) increase by ∼20%-50% when R13E (nominal net charge, +4) or R13Q (+5) is bound. Analysis of the slow blocking kinetics for the two toxin derivatives showed comparable decreases in affinity of the μ-conotoxins in the presence of an amine. Although this mutual inhibition seems to be qualitatively consistent with an electrostatic interaction across the selectivity filter, quantitative considerations raise questions about the mechanistic details of the interaction.  相似文献   
29.
Comparative studies on cnidocysts, involving adequate statistical treatment, are very scarce. Classical statistical tests are frequently used assuming normal frequency distributions of capsule lengths, but many distributions are non-normal in acontiarian sea anemones. A traditional choice in these situations are non-parametric tests, although they are not as powerful as parametric tests. An extension of classical methods was developed by some authors; these models, called Generalized Linear Models (GLM), can be used under certain conditions with non-normal data. In view of the properties of our data, that are positive, skewed and with constant coefficient of variation, a GLM with gamma distribution and inverse link function was chosen to analyse the cnidae of acontia from the species Haliplanella lineata, Tricnidactis errans and Anthothoe chilensis. Graphical analysis of residuals showed that these assumptions were reasonable. This method allowed us to avoid transformation of data set and controversial cases in the limit of significance level. For this task, appropriate subroutines in GLIM language were written. In all cases highly significant differences were found between the specimens considered for every species and nematocyst type (b-rhabdoids, p-rhabdoids B1b and p-rhabdoids B2a).  相似文献   
30.
Starch synthase III (SSIII), one of the SS isoforms involved in plant starch synthesis, has been reported to play a regulatory role in the synthesis of transient starch. SSIII from Arabidopsis thaliana contains 1025 amino acid residues and has an N-terminal transit peptide for chloroplast localization which is followed by three repeated starch-binding domains (SBDs; SSIII residues 22-591) and a C-terminal catalytic domain (residues 592-1025) similar to bacterial glycogen synthase. In this work, we constructed recombinant full-length and truncated isoforms of SSIII, lacking one, two, or three SBDs, and recombinant proteins, containing three, two, or one SBD, to investigate the role of these domains in enzyme activity. Results revealed that SSIII uses preferentially ADPGlc, although UDPGlc can also be used as a sugar donor substrate. When ADPGlc was used, the presence of the SBDs confers particular properties to each isoform, increasing the apparent affinity and the V max for the oligosaccharide acceptor substrate. However, no substantial changes in the kinetic parameters for glycogen were observed when UDPGlc was the donor substrate. Under glycogen saturating conditions, the presence of SBDs increases progressively the apparent affinity and V max for ADPGlc but not for UDPGlc. Adsorption assays showed that the N-terminal region of SSIII, containing three, two, or one SBD module have increased capacity to bind starch depending on the number of SBD modules, with the D23 protein (containing the second and third SBD module) being the one that makes the greatest contribution to binding. The results presented here suggest that the N-terminal SBDs have a regulatory role, showing a starch binding capacity and modulating the catalytic properties of SSIII.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号