首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   9篇
  2015年   4篇
  2013年   10篇
  2012年   4篇
  2011年   7篇
  2010年   11篇
  2009年   12篇
  2008年   8篇
  2007年   17篇
  2006年   10篇
  2005年   11篇
  2004年   6篇
  2002年   2篇
  1998年   4篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   4篇
  1993年   8篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1987年   2篇
  1986年   4篇
  1985年   8篇
  1984年   2篇
  1983年   2篇
  1982年   5篇
  1981年   3篇
  1976年   2篇
  1975年   5篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1963年   1篇
  1959年   2篇
  1958年   2篇
  1957年   5篇
  1956年   5篇
  1955年   3篇
  1954年   4篇
  1953年   3篇
  1951年   5篇
  1950年   1篇
  1949年   4篇
  1948年   3篇
  1941年   2篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
71.
72.
1. In lowland streams sand sedimentation can produce sand slugs: very slow moving, discrete volumes of sand that are created episodically. Hypothetically, such sedimentation causes losses of habitat and fauna but little is known about the effects of sand slugs. In south‐eastern Australia sand slugs are widespread, especially in streams with granitic catchments. 2. This study in north‐central Victoria was centred on three streams that rise in the Strathbogie Ranges and flow out onto lowland plains, where they contain sand slugs. Below the sand slugs, the streams are slow‐flowing ‘chains of ponds’ with a clay streambed. To correct for potential upstream‐downstream confounding of comparisons, two unsanded, nearby streams were included as potential controls. Habitat measurements and faunal samples were taken in Spring 1998, from three sites in the sand slug and three sites in the clay‐bed, downstream sections of each impacted stream, as well as from three sites in commensurate upstream and downstream sections of the control streams. 3. The sand‐slugged sections had significantly higher velocities, shallower depths and less coarse woody debris than the unsanded downstream sections. Macroinvertebrate taxon richness and abundance showed some significant differences between the sand and clay sections compared with commensurate up‐ and downstream locations in the control streams. Effects were not uniform, however. In Castle Creek there were no significant differences between the sand and clay sections, in Pranjip‐Ninemile Creek taxon richness and abundances were higher in sand than in the clay sections, whereas in Creightons Creek the ‘expected’ results of lower taxon richness and abundance in the sand were found. 4. Of the 40 most common taxa, only eight provided a clear signal related to sand and, of these, one (Slavina sp.) occurred only in the sand slugs, whereas the other seven had significantly higher numbers in the clay sections. Of these taxa, three were ostracods, three were chironomids and one was a tubificid oligochaete, all taxa that live in detritus‐rich environments. Overall faunal composition did not show a clear distinction though, between sandy and clay sites. The sand slug community of Creightons Creek was very different from the other communities in all of the streams. There were clear differences in community composition between the sand‐affected and the control streams, even for downstream, clay sections, suggesting they cannot act as controls for the impacted sections of the sand‐slugged streams. 5. Differences between streams within categories (particularly between sand‐slugged streams) and between sites in the same section of stream accounted for most of the variability in species richness and the abundances of each of the 40 most common taxa. That finding was repeated when data were examined at the family level, for both numbers of families per sample and collated lists of families occurring across sites. These results strongly suggest that the effects of sedimentation by sand slugs do not overwhelm background variation in macroinvertebrate density and diversity. Overall the results suggest that many taxa may respond individually, and that there is much variation between sand‐affected streams even over relatively small (approximately <10 km) spatial scales.  相似文献   
73.
74.
75.
76.
77.
The Ediacaran Period: a new addition to the geologic time scale   总被引:1,自引:0,他引:1  
The International Union of Geological Sciences has approved a new addition to the geologic time scale: the Ediacaran Period. The Ediacaran is the first Proterozoic period to be recognized on the basis of chronostratigraphic criteria and the first internationally ratified, chronostratigraphically defined period of any age to be introduced in more than a century. In accordance with procedures established by the International Commission on Stratigraphy, the base of the Ediacaran Period is defined by a Global Stratotype Section and Point (GSSP) placed at the base of the Nuccaleena Formation cap carbonate directly above glacial diamictites and associated facies at Enorama Creek in the Flinders Ranges of South Australia. Its top is defined by the initial GSSP of the Cambrian Period. The new Ediacaran Period encompasses a distinctive interval of Earth history that is bounded both above and below by equally distinctive intervals. Both chemostratigraphic and biostratigraphic data indicate that the subdivision of the period into two or more series is feasible, and this should be a primary objective of continuing work by the Ediacaran Subcommission of the ICS.  相似文献   
78.
Abstract.  1. Life-history traits and density were assayed in seven populations of two sympatric species of wolf spider for three consecutive years. The goal of the study was to quantify population dynamics and its relation to spatial and temporal life-history variation.
2. Adult female body size and fecundity varied significantly, among field sites and among years, in both species. Female spiders of both species differed in mean relative reproductive effort among sites, but not among years. The size of offspring was invariable, with no significant differences due to site or year.
3. All populations of both species tended to either decrease or increase in density during a given year and this was tightly correlated with changes in prey consumption rates.
4. Since life-history patterns are determined primarily by selection, it is concluded that size at sexual maturity for females is phenotypically plastic and responds to changes in prey availability. Offspring size however is not plastic and it is likely that other selection forces have determined offspring size. Temporal fluctuations in population size are correlated over a large area relative to dispersal capabilities for these species and conservation efforts for invertebrates must take this into consideration.  相似文献   
79.
80.
Echolocation has evolved independently in several vertebrate groups, and hypotheses about the origin of echolocation in these groups often invoke abiotic mechanisms driving morphological evolution. In bats, for example, the ecological setting associated with the origin of echolocation has been linked to global warming during the Palaeocene–Eocene; similarly, the origin of toothed whales (odontocetes) has been broadly correlated with the establishment of the circum-Antarctic current. These scenarios, and the adaptational hypotheses for the evolution of echolocation with which they are associated, neglect a consideration of possible biotic mechanisms. Here we propose that the origin of echolocation in odontocetes was initially an adaptation for nocturnal epipelagic feeding – primarily on diel migrating cephalopods. We test this hypothesis using data on the temporal, geographical, and water column distributions of odontocetes and cephalopods, and other global events from their respective tertiary histories. From this analysis, we suggest that echolocation in early odontocetes aided nocturnal feeding on cephalopods and other prey items, and that this early system was exapted for deep diving and hunting at depths below the photic zone where abundant cephalopod resources were available 24 h a day. This scenario extends to the evolution of other cephalopod feeding (teuthophagous) marine vertebrates such as pinnipeds and Mesozoic marine reptiles.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号