首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1864篇
  免费   231篇
  2022年   8篇
  2021年   20篇
  2020年   21篇
  2019年   21篇
  2018年   23篇
  2017年   23篇
  2016年   33篇
  2015年   57篇
  2014年   78篇
  2013年   69篇
  2012年   101篇
  2011年   100篇
  2010年   70篇
  2009年   65篇
  2008年   85篇
  2007年   106篇
  2006年   91篇
  2005年   70篇
  2004年   72篇
  2003年   71篇
  2002年   69篇
  2001年   68篇
  2000年   59篇
  1999年   49篇
  1998年   34篇
  1997年   30篇
  1996年   26篇
  1995年   13篇
  1994年   14篇
  1993年   15篇
  1992年   29篇
  1991年   36篇
  1990年   32篇
  1989年   39篇
  1988年   32篇
  1987年   34篇
  1986年   21篇
  1985年   37篇
  1984年   26篇
  1983年   28篇
  1982年   15篇
  1981年   14篇
  1980年   15篇
  1979年   13篇
  1978年   15篇
  1977年   18篇
  1975年   19篇
  1974年   12篇
  1973年   8篇
  1972年   9篇
排序方式: 共有2095条查询结果,搜索用时 140 毫秒
101.
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.  相似文献   
102.
103.
Many empirical studies motivated by an interest in stable coexistence have quantified negative density dependence, negative frequency dependence, or negative plant–soil feedback, but the links between these empirical results and ecological theory are not straightforward. Here, we relate these analyses to theoretical conditions for stabilisation and stable coexistence in classical competition models. By stabilisation, we mean an excess of intraspecific competition relative to interspecific competition that inherently slows or even prevents competitive exclusion. We show that most, though not all, tests demonstrating negative density dependence, negative frequency dependence, and negative plant–soil feedback constitute sufficient conditions for stabilisation of two‐species interactions if applied to data for per capita population growth rates of pairs of species, but none are necessary or sufficient conditions for stable coexistence of two species. Potential inferences are even more limited when communities involve more than two species, and when performance is measured at a single life stage or vital rate. We then discuss two approaches that enable stronger tests for stable coexistence‐invasibility experiments and model parameterisation. The model parameterisation approach can be applied to typical density‐dependence, frequency‐dependence, and plant–soil feedback data sets, and generally enables better links with mechanisms and greater insights, as demonstrated by recent studies.  相似文献   
104.
105.
High levels of reactive oxygen species (ROS) are associated with cytotoxicity. Alternatively, nontoxic levels of ROS like hydrogen peroxide (H(2)O(2)) can mediate the transmission of many intracellular signals, including those involved in growth and transformation. To identify pathways downstream of endogenous cellular H(2)O(2) production, the response of Rat-1 fibroblasts exhibiting differential HER-2/Neu receptor tyrosine kinase activity to removal of physiological H(2)O(2) concentrations was investigated. The proliferation of all cells was abolished by addition of the H(2)O(2) scavenger catalase to the culture medium. HER-2/Neu activity was not significantly affected by catalase treatment, suggesting that the target(s) of the H(2)O(2) signal lie downstream of the receptor in our model. ERK1/2 phosphorylation was blocked by catalase in fibroblasts expressing wild type Neu, however such a response did not occur in cells possessing activated mutant Neu. This indicates that the ERK1/2 response contributes little to the growth inhibition observed. By contrast, JNK1 activity increased following the addition of catalase or H(2)O(2), regardless of Neu activity or level of cell transformation. Phosphorylation of p38 MAPK was induced by H(2)O(2) but not by catalase. These observations suggest that scavenging of H(2)O(2) from the cellular environment blocks Rat-1 proliferation primarily through the activation of stress pathways.  相似文献   
106.
We have isolated the full-length cDNA of a novel human serine threonine protein kinase gene. The deduced protein sequence contains two cysteine-rich motifs at the N terminus, a pleckstrin homology domain, and a catalytic domain containing all the characteristic sequence motifs of serine protein kinases. It exhibits the strongest homology to the serine threonine protein kinases PKD/PKCmicro and PKCnu, particularly in the duplex zinc finger-like cysteine-rich motif, in the pleckstrin homology domain and in the protein kinase domain. In contrast, it shows only a low degree of sequence similarity to other members of the PKC family. Therefore, the new protein has been termed protein kinase D2 (PKD2). The mRNA of PKD2 is widely expressed in human and murine tissues. It encodes a protein with a molecular mass of 105 kDa in SDS-polyacrylamide gel electrophoresis, which is expressed in various human cell lines, including HL60 cells, which do not express PKCmicro. In vivo phorbol ester binding studies demonstrated a concentration-dependent binding of [(3)H]phorbol 12,13-dibutyrate to PKD2. The addition of phorbol 12,13-dibutyrate in the presence of dioleoylphosphatidylserine stimulated the autophosphorylation of PKD2 in a synergistic fashion. Phorbol esters also stimulated autophosphorylation of PKD2 in intact cells. PKD2 activated by phorbol esters efficiently phosphorylated the exogenous substrate histone H1. In addition, we could identify the C-terminal Ser(876) residue as an in vivo phosphorylation site within PKD2. Phosphorylation of Ser(876) of PKD2 correlated with the activation status of the kinase. Finally, gastrin was found to be a physiological activator of PKD2 in human AGS-B cells stably transfected with the CCK(B)/gastrin receptor. Thus, PKD2 is a novel phorbol ester- and growth factor-stimulated protein kinase.  相似文献   
107.
A mouse model for mucopolysaccharidosis type III A (Sanfilippo syndrome)   总被引:3,自引:0,他引:3  
Mucopolysaccharidosis type III A (MPS III A, Sanfilippo syndrome) is a rare, autosomal recessive, lysosomal storage disease characterized by accumulation of heparan sulfate secondary to defective function of the lysosomal enzyme heparan N- sulfatase (sulfamidase). Here we describe a spontaneous mouse mutant that replicates many of the features found in MPS III A in children. Brain sections revealed neurons with distended lysosomes filled with membranous and floccular materials with some having a classical zebra body morphology. Storage materials were also present in lysosomes of cells of many other tissues, and these often stained positively with periodic-acid Schiff reagent. Affected mice usually died at 7-10 months of age exhibiting a distended bladder and hepatosplenomegaly. Heparan sulfate isolated from urine and brain had nonreducing end glucosamine- N -sulfate residues that were digested with recombinant human sulfamidase. Enzyme assays of liver and brain extracts revealed a dramatic reduction in sulfamidase activity. Other lysosomal hydrolases that degrade heparan sulfate or other glycans and glycosaminoglycans were either normal, or were somewhat increased in specific activity. The MPS III A mouse provides an excellent model for evaluating pathogenic mechanisms of disease and for testing treatment strategies, including enzyme or cell replacement and gene therapy.  相似文献   
108.
109.
110.
Tang N  Muller JG  Burrows CJ  Rokita SE 《Biochemistry》1999,38(50):16648-16654
The structural characteristics of Z-DNA were used to challenge the selectivity of guanine oxidation promoted by nickel and cobalt reagents. Base pairing and stacking within all helical structures studied previously had hindered access to guanine and limited its reaction. However, the Z-helix uniquely retains high exposure of guanine N7. This exposure was sufficient to direct oxidation specifically to a plasmid insert -(CG)(13)AATT(CG)(13)- that adopted a Z-conformation under native supercoiling. An alternative insert -(CG)(7)- retained its B-conformation and demonstrated the expected lack of reactivity. For a nickel salen complex made from a particularly bulky ligand, preferential reaction shifted to the junctions within the Z-DNA insert as is common for large reagents. Inactivation of the nickel reagents by high-salt concentrations prevented parallel investigations of Z-DNA, formed by oligonucleotides. However, the activity of Co(2+) was minimally affected by salt and consequently confirmed the high reactivity of 5'-p(CG)(4) in its Z-conformation. These reagents may now be applied to a broad array of targets, since their structural specificity remains predictable for both complex and helical assemblies of nucleic acids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号