首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   16篇
  国内免费   1篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   1篇
  2016年   5篇
  2015年   9篇
  2014年   5篇
  2013年   5篇
  2012年   14篇
  2011年   9篇
  2010年   5篇
  2009年   9篇
  2008年   12篇
  2007年   18篇
  2006年   13篇
  2005年   9篇
  2004年   9篇
  2003年   8篇
  2002年   10篇
  2001年   11篇
  2000年   10篇
  1999年   9篇
  1998年   7篇
  1997年   8篇
  1996年   3篇
  1994年   1篇
  1993年   5篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   1篇
  1988年   3篇
  1987年   5篇
  1986年   1篇
  1985年   1篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   2篇
  1976年   2篇
  1974年   2篇
  1971年   1篇
  1970年   2篇
  1967年   1篇
  1958年   1篇
排序方式: 共有247条查询结果,搜索用时 296 毫秒
31.
32.
Blooms of the brown tide pelagophyte, Aureococcus anophagefferens, have been reported in coastal bays along the east coast of the USA for nearly two decades. Blooms appear to be constrained to shallow bays that have low flushing rates, little riverine input and high salinities (e.g., >28). Nutrient enrichment and coastal eutrophication has been most frequently implicated as the cause of A. anophagefferens and other blooms in coastal bays. We compare N and C dynamics during two brown tide blooms, one in Quantuck Bay, on Long Island, NY in 2000, and the other in Chincoteague Bay, at Public Landing, MD in 2002, with a physically similar site in Chincoteague Bay that did not experience a bloom. We found that the primary forms of nitrogen (N) taken up during the bloom in Quantuck Bay were ammonium and dissolved free amino acids (DFAA) while the primary form of N fueling production at both sites in Chincoteague Bay was urea. At both Chincoteague sites, amino acid carbon (C) was taken up while urea C was not. Even though A. anophagefferens has the ability to take up organic C, during the bloom at Chincoteague Bay, photosynthetic uptake of bicarbonate was the dominant pathway of C acquisition by the >1.2 μm size fraction during the day. C uptake by cells <5.0 μm was insufficient to meet cellular C demand based on the measured N uptake rates and the C:N ratio of particulate material. While cells >1.2 μm did not take up much organic C during the day, smaller cells (>0.2 μm) did. Peptide hydrolysis appeared to play an important role in mobilizing organic matter in Quantuck Bay, where amino acids contributed substantially to N and C uptake, but not in Chincoteague Bay. Dissolved organic N (DON), dissolved organic C (DOC) concentrations and the DOC/DON ratio were higher and total dissolved inorganic N (DIN) concentrations were lower at the bloom site in Chincoteague Bay than at the nonbloom site in the same bay. We conclude that A. anophagefferens is capable of using a wide variety of N and C compounds, and that nutrient inputs, biotic interactions and the dominant recycling pathways determine which compounds are available and which metabolic pathways are active at a particular site.  相似文献   
33.
We report on the first phytochemical investigation of a member of the African genus Resnova (Hyacinthoideae: Hyacinthaceae). From the dichloromethane extract of the bulbs of both Resnova humifusa and Eucomis montana (Hyacinthoideae: Hyacinthaceae) a novel 3-benzyl-4-chromanone homoisoflavonoid, 5,6-dimethoxy-7-hydroxy-3-(4′-hydroxybenzyl)-4-chromanone, was isolated. A further 11 known homoisoflavonoids were also identified, the 12 in total presenting a clear biosynthetic sequence. Eight of the 12 compounds found were common to both species.  相似文献   
34.
Breathing during hypercapnia is determined by reflex mechanisms but may also be influenced by respiratory sensations. The present study examined the effects of voluntary changes in level and pattern of breathing on the sensation of dyspnea at a constant level of chemical drive. Studies were carried out in 15 normal male subjects during steady-state hypercapnia at an end-tidal PCO2 of 50 Torr. The intensity of dyspnea was rated on a Borg category scale. In one experiment (n = 8), the level of ventilation was increased or decreased from the spontaneously adopted level (Vspont). In another experiment (n = 9), the minute ventilation was maintained at the level spontaneously adopted at PCO2 of 50 Torr and breathing frequency was increased or decreased from the spontaneously adopted level (fspont) with reciprocal changes in tidal volume. The intensity of dyspnea (expressed as percentage of the spontaneous breathing level) correlated with ventilation (% Vspont) negatively at levels below Vspont (r = -0.70, P less than 0.001) and positively above Vspont (r = 0.80, P less than 0.001). At a constant level of ventilation, the intensity of dyspnea correlated with breathing frequency (% fspont) negatively at levels below fspont (r = -0.69, P less than 0.001) and positively at levels above fspont (r = 0.75, P less than 0.001). These results indicate that dyspnea intensifies when the level or pattern of breathing is voluntarily changed from the spontaneously adopted level. This is consistent with the possibility that ventilatory responses to changes in chemical drive may be regulated in part to minimize the sensations of respiratory effort and discomfort.  相似文献   
35.
Previous studies showed that, in wild-type (MATa) cells, alpha-factor causes an essential rise in cytosolic Ca2+. We show that calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is one target of this Ca2+ signal. Calcineurin mutants lose viability when incubated with mating pheromone, and overproduction of constitutively active (Ca(2+)-independent) calcineurin improves the viability of wild-type cells exposed to pheromone in Ca(2+)-deficient medium. Thus, one essential consequence of the pheromone-induced rise in cytosolic Ca2+ is activation of calcineurin. Although calcineurin inhibits intracellular Ca2+ sequestration in yeast cells, neither increased extracellular Ca2+ nor defects in vacuolar Ca2+ transport bypasses the requirement for calcineurin during the pheromone response. These observations suggest that the essential function of calcineurin in the pheromone response may be distinct from its modulation of intracellular Ca2+ levels. Mutants that do not undergo pheromone-induced cell cycle arrest (fus3, far1) show decreased dependence on calcineurin during treatment with pheromone. Thus, calcineurin is essential in yeast cells during prolonged exposure to pheromone and especially under conditions of pheromone-induced growth arrest. Ultrastructural examination of pheromone-treated cells indicates that vacuolar morphology is abnormal in calcineurin-deficient cells, suggesting that calcineurin may be required for maintenance of proper vacuolar structure or function during the pheromone response.  相似文献   
36.
The prototype ferredoxin maquette, FdM, is a 16-amino acid peptide which efficiently incorporates a single [4Fe-4S]2+/+ cluster with spectroscopic and electrochemical properties that are typical of natural bacterial ferredoxins. Using this synthetic protein scaffold, we have investigated the role of the nonliganding amino acids in the assembly of the iron-sulfur cluster. In a stepwise fashion, we truncated FdM to a seven-amino acid peptide, FdM-7, which incorporates a cluster spectroscopically identical to FdM but in lower yield, 29% relative to FdM. FdM-7 consists solely of the. CIACGAC. consensus ferredoxin core motif observed in natural protein sequences. Initially, all of the nonliganding amino acids were substituted for either glycine, FdM-7-PolyGly (.CGGCGGC.), or alanine, FdM-7-PolyAla (.CAACAAC.), on the basis of analysis of natural ferredoxin sequences. Both FdM-7-PolyGly and FdM-7-PolyAla incorporated little [4Fe-4S]2+/+ cluster, 6 and 7%, respectively. A systematic study of the incorporation of a single isoleucine into each of the four nonliganding positions indicated that placement either in the second or in the sixth core motif positions,.CIGCGGC. or.CGGCGIC., restored the iron-sulfur cluster binding capacity of the peptides to the level of FdM-7. Incorporation of an isoleucine into the fifth position,.CGGCIGC., which in natural ferredoxins is predominantly occupied by a glycine, resulted in a loss of [4Fe-4S] affinity. The substitution of leucine, tryptophan, and arginine into the second core motif position illustrated the stabilization of the [4Fe-4S] cluster by bulky hydrophobic amino acids. Furthermore, the incorporation of a single isoleucine into the second core motif position in a 16-amino acid ferredoxin maquette resulted in a 5-fold increase in the level of [4Fe-4S] cluster binding relative to that of the glycine variant. The protein design rules derived from this study are fully consistent with those derived from natural ferredoxin sequence analysis, suggesting they are applicable to both the de novo design and structure-based redesign of natural proteins.  相似文献   
37.
Spontaneous bacteriophage-resistant mutants of the phytopathogen Erwinia carotovora subsp. atroseptica (Eca) SCRI1043 were isolated and, out of 40, two were found to exhibit reduced virulence in planta. One of these mutants, A5/22, showed multiple cell surface defects including alterations in synthesis of outer membrane proteins, lipopolysaccharide (LPS), enterobacterial common antigen (ECA), and flagella. Mutant A5/22 also showed reduced synthesis of the exoenzymes pectate lyase (Pel) and cellulase (Cel), major virulence factors for this pathogen. Genetic analysis revealed the pronounced pleiotropic mutant phenotype to be due to a defect in a single gene (rffG) that, in Escherichia coli, is involved in the production of ECA. We also show that while other enteric bacteria possess duplicate homologues of this gene dedicated separately to synthesis of LPS and ECA, Eca has a single gene.  相似文献   
38.
39.

Background

Impetigo and scabies are endemic diseases in many tropical countries; however the epidemiology of these diseases is poorly understood in many areas, particularly in the Pacific.

Methodology/Principal Findings

We conducted three epidemiological studies in 2006 and 2007 to determine the burden of disease due to impetigo and scabies in children in Fiji using simple and easily reproducible methodology. Two studies were performed in primary school children (one study was a cross-sectional study and the other a prospective cohort study over ten months) and one study was performed in infants (cross-sectional). The prevalence of active impetigo was 25.6% (95% CI 24.1–27.1) in primary school children and 12.2% (95% CI 9.3–15.6) in infants. The prevalence of scabies was 18.5% (95% CI 17.2–19.8) in primary school children and 14.0% (95% CI 10.8–17.2) in infants. The incidence density of active impetigo, group A streptococcal (GAS) impetigo, Staphylococcus aureus impetigo and scabies was 122, 80, 64 and 51 cases per 100 child-years respectively. Impetigo was strongly associated with scabies infestation (odds ratio, OR, 2.4, 95% CI 1.6–3.7) and was more common in Indigenous Fijian children when compared with children of other ethnicities (OR 3.6, 95% CI 2.7–4.7). The majority of cases of active impetigo in the children in our study were caused by GAS. S. aureus was also a common cause (57.4% in school aged children and 69% in infants).

Conclusions/Significance

These data suggest that the impetigo and scabies disease burden in children in Fiji has been underestimated, and possibly other tropical developing countries in the Pacific. These diseases are more than benign nuisance diseases and consideration needs to be given to expanded public health initiatives to improve their control.  相似文献   
40.
It is now widely accepted that enzyme-catalysed C-H bond breakage occurs by quantum mechanical tunnelling. This paradigm shift in the conceptual framework for these reactions away from semi-classical transition state theory (TST, i.e. including zero-point energy, but with no tunnelling correction) has been driven over the recent years by experimental studies of the temperature dependence of kinetic isotope effects (KIEs) for these reactions in a range of enzymes, including the tryptophan tryptophylquinone-dependent enzymes such as methylamine dehydrogenase and aromatic amine dehydrogenase, and the flavoenzymes such as morphinone reductase and pentaerythritol tetranitrate reductase, which produced observations that are also inconsistent with the simple Bell-correction model of tunnelling. However, these data-especially, the strong temperature dependence of reaction rates and the variable temperature dependence of KIEs-are consistent with other tunnelling models (termed full tunnelling models), in which protein and/or substrate fluctuations generate a configuration compatible with tunnelling. These models accommodate substrate/protein (environment) fluctuations required to attain a configuration with degenerate nuclear quantum states and, when necessary, motion required to increase the probability of tunnelling in these states. Furthermore, tunnelling mechanisms in enzymes are supported by atomistic computational studies performed within the framework of modern TST, which incorporates quantum nuclear effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号