首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   973篇
  免费   87篇
  2021年   11篇
  2020年   8篇
  2019年   14篇
  2018年   12篇
  2017年   10篇
  2016年   19篇
  2015年   32篇
  2014年   40篇
  2013年   47篇
  2012年   51篇
  2011年   62篇
  2010年   38篇
  2009年   40篇
  2008年   32篇
  2007年   38篇
  2006年   34篇
  2005年   31篇
  2004年   22篇
  2003年   16篇
  2002年   33篇
  2001年   24篇
  2000年   27篇
  1999年   23篇
  1998年   19篇
  1997年   10篇
  1996年   11篇
  1995年   14篇
  1994年   13篇
  1993年   14篇
  1992年   26篇
  1991年   20篇
  1990年   23篇
  1989年   21篇
  1988年   20篇
  1987年   15篇
  1986年   14篇
  1985年   12篇
  1984年   10篇
  1983年   10篇
  1982年   7篇
  1981年   13篇
  1979年   8篇
  1978年   11篇
  1977年   6篇
  1976年   8篇
  1975年   6篇
  1974年   6篇
  1973年   8篇
  1972年   8篇
  1971年   6篇
排序方式: 共有1060条查询结果,搜索用时 31 毫秒
51.
The cause of the failure of the C2H2-C2H4 assay for nitrogen-fixing bacteria growing on lower alkanes was studied. Acetylene was a strong competitive inhibitor of methane oxidation for methane-utilizing bacteria, as well as for the oxidation of lower alkanes by other bacteria, so that energy and reducing power were no longer available for the reduction of acetylene by nitrogenase. Nitrogen-fixing bacteria grown on alkanes may reduce acetylene when intermediates of alkane-breakdown or other substrates oxidizable in the presence of acetylene are supplied. Ethylene co-oxidation is not responsible for the failure of the test, because acetylene also inhibits this co-oxidation along with methane oxidation.  相似文献   
52.
Intercellular exchange of N-acetyl-β-D-glucosaminidase (EC 3.2.1.30) β-galactosidase (EC 3.2.1.23) and acid α-glucosidase (EC 3.2.1.20) was studied after cocultivation of normal and enzyme deficient human fibroblasts in confluent cultures. Enzyme activities were measured in single cells using microchemical procedures. After co-cultivation of normal control fibroblasts and those from a patient with Sandhoff's disease an increase of activity of N-acetyl-β-D-glucosaminidase was found in Sandhoff cells, together with a decrease of activity in normal control cells. After co-cultivation of normal fibroblasts and those from patients with glycogenosis II and GM1-gangliosidosis, no indication was found for intercellular transfer of acid α-glucosidase and β-galactosidase respectively. The significance of the results is discussed in respect of the hypothesis of Hickman and Neufeld about secretion and uptake of lysosomal enzymes.  相似文献   
53.
The concept of "stimulus-secretion coupling" suggested by Douglas and co-workers to explain the events related to monamine discharge by the adrenal medulla (5, 7) may be applied to other endocrine tissues, such as adrenal cortex (36), pancreatic islets (4), and magnocellular hypothalamic neurons (6), which exhibit a similar ion-dependent process of hormone elaboration. In addition, they share another feature, that of joining neighbor cells via membrane junctions (12, 26, and Fletcher, unpublished observation). Given this, and the reports that hormone secretion by the pars distalis also involves a secretagogue-induced decrease in membrane bioelectric potential accompanied by a rise in cellular [Ca++] (27, 34, 41), it was appropriate to test the possibility that cells of the anterior pituitary gland are united by junctions.  相似文献   
54.
The synthesis of ketone bodies by intact isolated rat-liver mitochondria has been studied at varying rates of acetyl-CoA production and of acetyl-CoA utilization in the Krebs cycle. Factors which enhanced the rate of acetyl-CoA production caused an increase in the fraction of acetyl-CoA which was incorporated into ketone bodies. On the other hand, it was found that factors which stimulated the formation of citrate lowered the relative rate of ketogenesis. It is concluded that acetyl-CoA is preferentially used for citrate synthesis, if the level of oxaloacetate in the mitochondrial matrix space is adequate. The intramitochondrial level of oxaloacetate, which is determined by the malate concentration and the ratio of NADH over NAD+, is the main factor controlling the rate of citrate synthesis. The ATP/ADP ratio per se does not affect the activity of citrate synthase in this in vitro system. Ketogenesis can be described as an overflow of acetyl-groups: Ketone-body formation is stimulated only when the rate of acetyl-CoA production increases beyond the capacity for citrate synthesis. The interaction between fatty acid oxidation and pyruvate metabolism and the effects of long-chain acyl-CoA on mitochondrial metabolism are discussed. Ketone bodies which were generated during the oxidation of [1-14C] fatty acids were preferentially labelled in their carboxyl group. This carboxyl group had the same specific activity as the acetyl-CoA pool, whereas the specific activity of the acetone moiety of acetoacetate was much lower, especially at low rates of ketone-body formation. The activities of acetoacetyl-CoA deacylase and the hydroxymethylglutaryl-CoA (HMG-CoA) pathway were compared in soluble and mitochondrial fractions of rat- and cow-liver in different ketotic states. In rat-liver mitochondria, both pathways of acetoacetate synthesis were stimulated upon starvation or in alloxan diabetes. In cow liver, only the HMG-CoA pathway was increased during ketosis in the mitochondrial as well as in the soluble fraction.  相似文献   
55.
Twenty-six flavonoids and related compounds were screened for their ability to modulate microsome mediated covalent adduct formation between [3H]benzo[a]pyrene ([3H]BP) and DNA in vitro. Some of these flavonoids, notably robinetin, quercetin, isorhamnetin and kaempferol were observed to inhibit the adduct formation significantly at very low levels. The unsubstituted flavone and some of the other flavonoids moderately inhibited this adduct formation, while some flavonoids were inactive, viz., most of the isoflavonoids and methylether derivatives of polyhydroxylated flavonoids. Structural features contributory towards the inhibitory activity of flavonoids appeared to be hydroxyl groups in 3 position of C ring, 5,7-positions of A ring and 3',4'- and 5'-positions of B ring. Methylation or glycosylation of hydroxyl group rendered the flavonoid less active or inactive. Flavanones, with saturated 2,3 double bond, were also inactive. Metabolic activation of BP to proximate carcinogen (+/-)-trans-7,8-dihydroxy-7,8-dihydro-BP (BP-7,8-dihydrodiol) was also measured in presence of some of these flavonoids. The extent of inhibition of metabolism by these flavonoids did not correlate with their ability to inhibit the adduct formation. Thus, suppression of metabolism did not appear to be a major contributory factor towards inhibition of adduct formation. The solvolysis in aqueous dioxane of (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydro-BP (BPDE I), the ultimate carcinogen of BP, was accelerated in presence of selected flavonoids. Inactivation of BPDE I, therefore, appeared to be the major mechanism by which some of these flavonoids inhibited the adduct formation between BP and DNA, and this could be the basis for the anti-carcinogenic nature of these flavonoids.  相似文献   
56.
57.
58.
The outcome of infection by Mycobacterium tuberculosis (Mtb) depends greatly on how the host responds to the bacteria and how the bacteria manipulates the host, which is facilitated by protein–protein interactions. Thus, to understand this process, there is a need for elucidating protein interactions between human and Mtb, which may enable us to characterize specific molecular mechanisms allowing the bacteria to persist and survive under different environmental conditions. In this work, we used the interologs method based on experimentally verified intra-species and inter-species interactions to predict human-Mtb functional interactions. These interactions were further filtered using known human-Mtb interactions and genes that are differentially expressed during infection, producing 190 interactions. Further analysis of the subcellular location of proteins involved in these human-Mtb interactions confirms feasibility of these interactions. We also conducted functional analysis of human and Mtb proteins involved in these interactions, checking whether these proteins play a role in infection and/or disease, and enriching Mtb proteins in a previously predicted list of drug targets. We found that the biological processes of the human interacting proteins suggested their involvement in apoptosis and production of nitric oxide, whereas those of the Mtb interacting proteins were relevant to the intracellular environment of Mtb in the host. Mapping these proteins onto KEGG pathways highlighted proteins belonging to the tuberculosis pathway and also suggested that Mtb proteins might use the host to acquire nutrients, which is in agreement with the intracellular lifestyle of Mtb. This indicates that these interactions can shed light on the interplay between Mtb and its human host and thus, contribute to the process of designing novel drugs with new biological mechanisms of action.  相似文献   
59.
An estimated 50 million dengue virus (DENV) infections occur annually and more than forty percent of the human population is currently at risk of developing dengue fever (DF) or dengue hemorrhagic fever (DHF). Despite the prevalence and potential severity of DF and DHF, there are no approved vaccines or antiviral therapeutics available. An improved understanding of DENV immune evasion is pivotal for the rational development of anti-DENV therapeutics. Antagonism of type I interferon (IFN-I) signaling is a crucial mechanism of DENV immune evasion. DENV NS5 protein inhibits IFN-I signaling by mediating proteasome-dependent STAT2 degradation. Only proteolytically-processed NS5 can efficiently mediate STAT2 degradation, though both unprocessed and processed NS5 bind STAT2. Here we identify UBR4, a 600-kDa member of the N-recognin family, as an interacting partner of DENV NS5 that preferentially binds to processed NS5. Our results also demonstrate that DENV NS5 bridges STAT2 and UBR4. Furthermore, we show that UBR4 promotes DENV-mediated STAT2 degradation, and most importantly, that UBR4 is necessary for efficient viral replication in IFN-I competent cells. Our data underscore the importance of NS5-mediated STAT2 degradation in DENV replication and identify UBR4 as a host protein that is specifically exploited by DENV to inhibit IFN-I signaling via STAT2 degradation.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号