首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   2篇
  2021年   3篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   3篇
  2013年   3篇
  2012年   1篇
  2011年   6篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2005年   4篇
  2004年   2篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1990年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
11.
12.
Understanding the population structure of species that disperse primarily by human transport is essential to predicting and controlling human-mediated spread of invasive species. The German cockroach (Blattella germanica) is a widespread urban invader that can actively disperse within buildings but is spread solely by human-mediated dispersal over longer distances; however, its population structure is poorly understood. Using microsatellite markers we investigated population structure at several spatial scales, from populations within single apartment buildings to populations from several cities across the U.S. and Eurasia. Both traditional measures of genetic differentiation and Bayesian clustering methods revealed increasing levels of genetic differentiation at greater geographic scales. Our results are consistent with active dispersal of cockroaches largely limited to movement within a building. Their low levels of genetic differentiation, yet limited active spread between buildings, suggests a greater likelihood of human-mediated dispersal at more local scales (within a city) than at larger spatial scales (within and between continents). About half the populations from across the U.S. clustered together with other U.S. populations, and isolation by distance was evident across the U.S. Levels of genetic differentiation among Eurasian cities were greater than those in the U.S. and greater than those between the U.S. and Eurasia, but no clear pattern of structure at the continent level was detected. MtDNA sequence variation was low and failed to reveal any geographical structure. The weak genetic structure detected here is likely due to a combination of historical admixture among populations and periodic population bottlenecks and founder events, but more extensive studies are needed to determine whether signatures of global movement may be present in this species.  相似文献   
13.
14.
Kagramanova AS  Korolev AL  Mukha DV 《Genetika》2010,46(11):1467-1472
The inheritance patterns of the 5'-truncated copies of R2 retroposons were analyzed in individual crosses of the German cockroach. The recombination level within the cluster of ribosomal RNA genes was determined. It was demonstrated that only the frequencies of individual variants of 5'-truncated retroposon copies are appropriate for population analysis rather than the patterns characterizing individual X chromosomes. The methodical approach used in the work is convenient for studying the genetic variation in ribosomal DNA multigene families.  相似文献   
15.
Mukha DV  Lazebnyĭ OE  Lazebnaia IV 《Genetika》1999,35(12):1622-1625
Southern-blot hybridization studies have revealed structural differences within the ribosomal DNA clusters of two sibling species, Drosophila melanogaster and Drosophila simulans. The approach used was shown to be suitable for taxonomic identification of the species examined.  相似文献   
16.
Lazebnaia IV  Mukha DV 《Genetika》2003,39(4):474-477
Species-specific characteristics of nuclear ribosomal DNA (rDNA) have been determined for the first time for six insect species of order Blattaria (Insecta, Dictyoptera) with the use of restriction analysis and Southern blotting. Probes containing highly conserved fragments of 18 S- and 28 S-like genes of the ribosomal RNA (rRNA) of Tetrahymena pyriformis were tested in this study. The genetic similarity tree constructed for the species studied agrees with evidence from classical taxonomy based on morphological, ecological, anatomical, and physiological characters.  相似文献   
17.

Background

Pseudomonas, a soil bacterium, has been observed as a dominant genus that survives in different habitats with wide hostile conditions. We had a basic assumption that the species level variation in 16S rDNA sequences of a bacterial genus is mainly due to substitutions rather than insertion or deletion of bases. Keeping this in view, the aim was to identify a region of 16S rDNA sequence and within that focus on substitution prone stretches indicating species level variation and to derive patterns from these stretches that are specific to the genus.

Results

Repeating elements that are highly conserved across different species of Pseudomonas were considered as guiding markers to locate a region within the 16S gene. Four repeating patterns showing more than 80% consistency across fifty different species of Pseudomonas were identified. The sub-sequences between the repeating patterns yielded a continuous region of 495 bases. The sub-sequences after alignment and using Shanon's entropy measure yielded a consensus pattern. A stretch of 24 base positions in this region, showing maximum variations across the sampled sequences was focused for possible genus specific patterns. Nine patterns in this stretch showed nearly 70% specificity to the target genus. These patterns were further used to obtain a signature that is highly specific to Pseudomonas. The signature region was used to design PCR primers, which yielded a PCR product of 150 bp whose specificity was validated through a sample experiment.

Conclusions

The developed approach was successfully applied to genus Pseudomonas. It could be tried in other bacterial genera to obtain respective signature patterns and thereby PCR primers, for their rapid tracking in the environmental samples.
  相似文献   
18.
Mukha DV  Mysina V  Mavropulo V  Schal C 《Génome》2011,54(3):222-234
The ribosomal DNA (rDNA) cluster of insects contains several hundred repeating structural-functional units and, therefore, is a typical example of a multigene family. Eukaryotic ribosomal RNA (rRNA) genes (18S, 5.8S, and 28S like) are arranged in tandemly repeated clusters in the nucleolus organizers, separated by several spacers, namely the nontranscribed spacer, the external transcribed spacer (ETS), and the internal transcribed spacers. The nucleotide sequences of the ETS of the three closely related Blattella cockroach species, Blattella germanica (Linnaeus, 1767), Blattella asahinai (Mizukubo, 1981), and Blattella lituricollis (Walker, 1868), were determined and compared. The three species had relatively similar ETS lengths, and sequence differences among them could be explained by two types of rearrangements, namely deletions of subrepeats and nucleotide substitutions. Minor ETS variants in B. germanica differed from the major variant in the same way that the major ETS variants of the three Blattella species differed from each other. Concerted evolution and the birth-and-death models, which are often invoked to explain the diversity and evolution of the multigene families of rDNA clusters, are discussed in the light of our data. A new model is proposed to explain the evolutionary reorganization of the ETS region: evolution of rDNA by "magnification-and-fixation" is characterized by magnification of minor subrepeats, which become adaptive in a new rapidly changed environment, and subsequent fixation of this variant type as a major component of the multigene family of a new species.  相似文献   
19.
Although a number of species live syanthropically with humans, few rely entirely on humans for their survival and distribution. Unlike other cosmopolitan human commensals, the German cockroach (Blattella germanica), an insect of both public and livestock health concern, is considered incapable of dispersal outside human dwellings. Patterns of genetic association are therefore constrained and may not be associated with distance. Analogies with other human-commensal species are therefore impossible to draw with any degree of accuracy. In the past 2 decades, B. germanica has become a prominent pest within the US swine production system. Swine production is mainly carried out through contracted producers, each associated with a management company. It has been hypothesized that cockroach populations will be genetically structured based on association to a specific management company. Here, we tested this hypothesis using microsatellite genotypes (8 polymorphic loci) from 626 individual cockroaches collected from 22 farms in southeastern North Carolina representing 3 management companies. Significant genetic differentiation was detected (F(ST) = 0.171), most of which was partitioned among the 22 farms rather than the 3 management groups. All pair-wise population comparisons yielded F(ST) values significantly greater than zero. Our results reveal that structure does not correspond to management company of origin, but instead it may be regional and influenced strongly by the unintentional movement of cockroaches by farm workers.  相似文献   
20.
For the first time, extended fragments (5′-truncated copies) of R1 and R2 retrotransposons integrated into the Blattella germanica genome were identified, cloned, and sequenced. Structural comparison of the clones revealed two distinct R1 subfamilies. However, all R1 clones had two common features: poly(T) tails and similar target site duplications. R1 retrotransposons are the first known mobile elements with poly(T) tails on the 3′-ends. The structure and nucleotide sequences of five sequenced R2 fragments were similar to each other. Nucleotide sequence analysis of R2 retrotransposons revealed typical deletions at the 3′ ends of the target sites and the lack of homopolynucleotide tails.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号