首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   337篇
  免费   25篇
  2023年   4篇
  2022年   7篇
  2021年   25篇
  2020年   5篇
  2019年   8篇
  2018年   11篇
  2017年   12篇
  2016年   16篇
  2015年   21篇
  2014年   16篇
  2013年   22篇
  2012年   24篇
  2011年   18篇
  2010年   17篇
  2009年   11篇
  2008年   18篇
  2007年   17篇
  2006年   9篇
  2005年   5篇
  2004年   8篇
  2003年   8篇
  2002年   8篇
  2001年   8篇
  1999年   2篇
  1996年   2篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   10篇
  1991年   5篇
  1990年   6篇
  1989年   3篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1977年   1篇
  1976年   3篇
  1975年   2篇
  1974年   1篇
  1973年   4篇
  1972年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
排序方式: 共有362条查询结果,搜索用时 125 毫秒
41.
Cell migration plays a critical role in a wide variety of physiological and pathological phenomena as well as in scaffold-based tissue engineering. Cell migration behavior is known to be governed by biochemical stimuli and cellular interactions. Biophysical processes associated with interactions between the cell and its surrounding extracellular matrix may also play a significant role in regulating migration. Although biophysical properties of two-dimensional substrates have been shown to significantly influence cell migration, elucidating factors governing migration in a three-dimensional environment is a relatively new avenue of research. Here, we investigate the effect of the three-dimensional microstructure, specifically the pore size and Young's modulus, of collagen-glycosaminoglycan scaffolds on the migratory behavior of individual mouse fibroblasts. We observe that the fibroblast migration, characterized by motile fraction as well as locomotion speed, decreases as scaffold pore size increases across a range from 90 to 150 μm. Directly testing the effects of varying strut Young's modulus on cell motility showed a biphasic relationship between cell speed and strut modulus and also indicated that mechanical factors were not responsible for the observed effect of scaffold pore size on cell motility. Instead, in-depth analysis of cell locomotion paths revealed that the distribution of junction points between scaffold struts strongly modulates motility. Strut junction interactions affect local directional persistence as well as cell speed at and away from the junctions, providing a new biophysical mechanism for the governance of cell motility by the extracellular microstructure.  相似文献   
42.
  • Terminal drought substantially reduces chickpea yield. Reducing water use at vegetative stage by reducing transpiration under high vapor pressure deficit (VPD), i.e. under dry/hot conditions, contributes to drought adaptation. We hypothesized that this trait could relate to differences in a genotype's dependence on root water transport pathways and hydraulics.
  • Transpiration rate responses in conservative and profligate chickpea genotypes were evaluated under increasing VPD in the presence/absence of apoplastic and cell‐to‐cell transport inhibitors.
  • Conservative genotypes ICC 4958 and ICC 8058 restricted transpiration under high VPD compared to the profligate genotypes ICC 14799 and ICC 867. Profligate genotypes were more affected by aquaporin inhibition of the cell‐to‐cell pathway than conservative genotypes, as measured by the root hydraulic conductance and transpiration under high VPD. Aquaporin inhibitor treatment also led to a larger reduction in root hydraulic conductivity in profligate than in conservative genotypes. In contrast, blockage of the apoplastic pathway in roots decreased transpiration more in conservative than in profligate genotypes. Interestingly, conservative genotypes had high early vigour, whereas profligate genotypes had low early vigour.
  • In conclusion, profligate genotypes depend more on the cell‐to‐cell pathway, which might explain their higher root hydraulic conductivity, whereas water‐saving by restricting transpiration led to higher dependence on the apoplastic pathway. This opens the possibility to screen for conservative or profligate chickpea phenotypes using inhibitors, itself opening to the search of the genetic basis of these differences.
  相似文献   
43.
Intranuclear bodies which are spherical in shape are clearly seen by ‘Anoptral’ (negative) phase microscopy in the nucleus of Entamoeba. These bodies vary in size and numbers from cell to cell. With interference microscopy the intranuclear bodies appear as spherical granules in the nucleus of the cell. Their distribution and numbers are again very variable. With electron microscopy the bodies can be clearly seen inside the nucleus. They are always spherical in shape but vary in size from 0·1 to 1·5 μm. They may be empty or contain granular or membranous material. They display the capacity to move out of the nucleus.  相似文献   
44.
45.
In a quest to identify new ground-state triplet germylenes, the stabilities (singlet–triplet energy differences, ΔES–T) of 96 singlet (s) and triplet (t) M1-Ge-M2-M3 species were compared and contrasted at the B3LYP/6–311++G**, QCISD(T)/6–311++G**, and CCSD(T)/6–311++G** levels of theory (M1?=?H, Li, Na, K; M2?=?Be, Mg, Ca; M3?=?H, F, Cl, Br). Interestingly, F-substituent triplet germylenes (M3?=?F) appear to be more stable and linear than the corresponding Cl- or Br-substituent triplet germylenes (M3?=?Cl or Br). Triplets with M1?=?K (i.e., the K-Ge-M2-M3 series) seem to be more stable than the corresponding triplets with M1?=?H, Li, or Na. This can be attributed to the higher electropositivity of potassium. Triplet species with M3?=?Cl behave similarly to those with M3?=?Br. Conversely, triplets with M3?=?H show similar stabilities and linearities to those with M3?=?F. Singlet species of formulae K-Ge-Ca-Cl and K-Ge-Ca-Br form unexpected cyclic structures. Finally, the triplet germylenes M1-Ge-M2-M3 become more stable as the electropositivities of the α-substituents (M1 and M2) and the electronegativity of the β-substituent (M3) increase.  相似文献   
46.
Isoprenaline hydrochloride is a potential cardiovascular drug helps in the smooth functioning of the heart muscles. So, we have performed the binding study of ISO with BSA. This study was investigated by UV absorption, fluorescence, synchronous fluorescence, circular dichroism, etc. The analysis of intrinsic fluorescence data showed the low binding affinity of ISO. The binding constant Kb was 2.8 × 103 M-1 and binding stoichiometry (n) was approximately one and the Gibb’s free energy change at 310 K was determined to be -8.69 kcal mol?1. Negative Gibb’s free energy change shows the spontaneity of the BSA and ISO interaction. We have found ISO-induced alternation in the UV absorption, synchronous fluorescence and CD spectra in the absence and presence of the quencher indicates the complex formation. In synchronous fluorescence, red shift was obtained because of the complex formation of BSA and ISO. The distance (r) between the BSA (donor) and ISO (acceptor) was 2.89 nm, determined by FRET. DLS measurements interpreted complex formation due to the reduction in hydrodynamic radii of the protein in the presence of the drug. The binding site of ISO was found to be nearer to Trp 134 with the help of molecular docking and the ΔG° was found to be –10.2 kcal mol?1. The esterase activity result suggests that ISO acts as competitive inhibitor. Thus, this study would help to determine the binding capacity of the drug to the protein which may indicate the efficiency of diffusion of ISO into the blood for the treatment of heart diseases.  相似文献   
47.
Microclones of different mulberry genotypes were successfully transferred to the field. The same genotypes were raised through conventional methods (cuttings). A comparative study using morphological and biochemical tests of field established micropropagated and cutting derived plants of mulberry genotypes was conducted. Micropropagated mulberry plants showed significant morphogenic vigour when compared to plants raised through cuttings. Biochemical tests of leaves revealed that, there was no significant nutritional difference between micropropagated plants and those originated from cuttings. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号