首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3734篇
  免费   196篇
  国内免费   25篇
  2024年   9篇
  2023年   77篇
  2022年   108篇
  2021年   319篇
  2020年   160篇
  2019年   181篇
  2018年   258篇
  2017年   159篇
  2016年   226篇
  2015年   275篇
  2014年   303篇
  2013年   302篇
  2012年   302篇
  2011年   250篇
  2010年   166篇
  2009年   144篇
  2008年   140篇
  2007年   125篇
  2006年   88篇
  2005年   82篇
  2004年   50篇
  2003年   44篇
  2002年   31篇
  2001年   8篇
  2000年   8篇
  1999年   8篇
  1998年   12篇
  1997年   7篇
  1996年   10篇
  1995年   13篇
  1994年   7篇
  1993年   8篇
  1992年   12篇
  1991年   8篇
  1990年   3篇
  1989年   8篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1974年   3篇
  1968年   1篇
排序方式: 共有3955条查询结果,搜索用时 140 毫秒
131.
All TGF-beta family members have a prodomain that is important for secretion. Lack of secretion of a TGF-beta family member GDF5 is known to underlie some skeletal abnormalities, such as brachydactyly type C that is characterized by a huge and unexplained phenotypic variability. To search for potential phenotypic modifiers regulating secretion of GDF5, we compared cells overexpressing wild type (Wt) GDF5 and GDF5 with a novel mutation in the prodomain identified in a large Pakistani family with Brachydactyly type C and mild Grebe type chondrodyslplasia (c527T>C; p.Leu176Pro). Initial in vitro expression studies revealed that the p.Leu176Pro mutant (Mut) GDF5 was not secreted outside the cells. We subsequently showed that GDF5 was capable of forming a complex with latent transforming growth factor binding proteins, LTBP1 and LTBP2. Furthermore, secretion of LTBP1 and LTBP2 was severely impaired in cells expressing the Mut-GDF5 compared to Wt-GDF5. Finally, we demonstrated that secretion of Wt-GDF5 was inhibited by the Mut-GDF5, but only when LTBP (LTBP1 or LTBP2) was co-expressed. Based on these findings, we suggest a novel model, where the dosage of secretory co-factors or stabilizing proteins like LTBP1 and LTBP2 in the microenvironment may affect the extent of GDF5 secretion and thereby function as modifiers in phenotypes caused by GDF5 mutations.  相似文献   
132.
Sulfonamides have been reported to possess substantial antitumor activity as they act as carbonic anhydrase inhibitors. In addition, selenium appears to have a protective effect at various stages of cancer due to its antioxidant property, enhanced carcinogen detoxification, inhibition of cell invasion, and by inhibiting angiogenesis. Here, in the present study we aimed to evaluate and synergize the cytotoxic activity of sulfonamide and selenium (SM+SE) as effective therapy in the treatment of DENA-induced HCC. Hepatocarcinogeneis was induced by a single intraperitoneal injection of diethylnitrosamine (DENA) (200 mg/kg) in phosphate buffer. 30 Male Wistar rats used in this study were divided randomly into five equal groups (n = 6). DENA-administered animals showed significant alteration (p < 0.001) in liver-specific enzymes—glutamate oxaloacetate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP), and Alpha fetoproteins (AFP), and also induced severe histopathological changes in the hepatic tissues. Interestingly, treatment with (SE+SE) (SM 30 mg/kg + SE 3 mg/kg) significantly reduced (P < 0.001, P < 0.001, P < 0.001, P < 0.001) the elevated AFP, SGOT, SGPT, and ALP levels, respectively, suggesting that combination therapy of SM+SE has a potential to treat DENA-induced liver damage.  相似文献   
133.
Exogenous application of different plant growth regulators is a well-recognized strategy to alleviate stress-induced adverse effects on different crop plants by regulating a variety of physiobiochemical processes such as photosynthesis, chlorophyll biosynthesis, nutrient uptake, antioxidant metabolism, and protein synthesis, which are directly or indirectly involved in the mechanism of stress tolerance. Of various environmental factors, salinity, drought, and extreme temperature (low or high) considerably diminish plant growth and yield by modulating endogenous levels as well as signaling pathways of plant hormones. Of various plant hormones/regulators, a potential plant growth regulator, 5-aminolevulinic acid (ALA), is known to be effective in counteracting the injurious effects of various abiotic stresses in plants. Until now the mechanisms behind ALA regulation of growth under stress have not been fully elucidated. It is also not yet clear how far growth and yield in different crops can be promoted by exogenous application of ALA and whether this ALA-induced growth and yield promotion is cost-effective. Thus, in this review we discuss at length the effects of ALA in regulating growth and development in plants under a variety of abiotic stress conditions, including salinity, drought, and temperature stress. Furthermore, advances in the functional and regulatory interactions of this plant growth regulator with plant stress tolerance, as well as the effective mode of exogenous application of ALA in inducing stress tolerance in plants are also comprehensively discussed in this review. In the future, overaccumulation of ALA in plants through manipulation of gene(s) could enhance plant stress tolerance. Thus, genetic manipulation of plants with the goal of attaining increased synthesis/accumulation of ALA and hence improved stress tolerance under stress conditions is an important area for research.  相似文献   
134.
Salinity and drought are important agro-environmental problems occurring separately as well as together with the combined occurrence increasing with time due to climate change. Screening of bread wheat genotypes against salinity or drought alone is common; however, little information is available on the response of wheat genotypes to a combination of these stresses. This study investigates the response of a salt-resistant (SARC-1) and a salt-sensitive (7-Cerros) wheat genotype to drought at different growth stages under non-saline (ECe 2.1 dS m?1) and saline soil (ECe 15 dS m?1) conditions. Drought was applied by withholding water for 21 days at a particular growth stage viz. tillering, booting, and grain filling stages. At booting stage measurements regarding water relations, leaf ionic composition and photosynthetic attributes were made. At maturity grain yield and different yield, components were recorded. Salinity and drought significantly decreased grain yield and different yield components with a higher decrease in the case of combined stress of salinity × drought. The complete drought treatment (drought at tillering + booting + grain filling stages) was most harmful for wheat followed by drought at booting stage and grain filling–tillering stages, respectively. The salt-resistant wheat genotype SARC-1 performed better than the salt-sensitive genotype 7-Cerros in different stress treatments. A decrease in the water and turgor potentials, photosynthetic and transpiration rates, stomatal conductance, leaf K+, and increased leaf Na+ were the apparent causes of growth and yield reduction of bread wheat due to salinity, drought, and salinity × drought.  相似文献   
135.
Fungal degradation of low rank coal has appeared as an alternative technique for exploitation of non-fuel options. A fungal isolate, MW1, was isolated and coal sample was subjected to fungal pretreatment. The residual coal was processed for extraction of humic acid for determining the effect of such pretreatment. Extracted humic acid was analyzed on the basis of elemental composition and spectroscopy. Fungal pretreatment caused improvement in oxygen content, E4/E6 ratio, and absorption bands related to humic materials. Conclusively, pretreatment resulted in improving chemical attributes of humic acid molecule, thus, warranting supplementary high-tech investigations for the optimization of process upscale.  相似文献   
136.
Electrospray ionization tandem mass spectrometry (ESI-MS/MS) was used to investigate the effect of different substitutions introduced during metabolism on fragmentation patterns of four anabolic steroids including methyltestosterone, methandrostenolone, cis-androsterone and adrenosterone, along with their metabolites. Collision-induced dissociation (CID) analysis was performed to correlate the major product ions of 19 steroids with structural features. The analysis is done to portray metabolic alteration, such as incorporation or reduction of double bonds, hydroxylations, and/or oxidation of hydroxyl moieties to keto functional group on steroidal skeleton which leads to drastically changed product ion spectra from the respective classes of steroids, therefore, making them difficult to identify. The comparative ESI-MS/MS study also revealed some characteristic peaks to differentiate different steroidal metabolites and can be useful for the unambiguous identification of anabolic steroids in biological fluid. Moreover, LC–ESI-MS/MS analysis of fermented extract of methyltestosterone, obtained by Macrophomina phaseolina was also investigated.  相似文献   
137.
Brassica napus (AACC) is a recent allotetraploid species evolved through hybridization between two diploids, B. rapa (AA) and B. oleracea (CC). Due to extensive genome duplication and homoeology within and between the A and C genomes of B. napus, most SSR markers display multiple fragments or loci, which limit their application in genetics and breeding studies of this economically important crop. In this study, we collected 3,890 SSR markers from previous studies and also developed 5,968 SSR markers from genomic sequences of B. rapa, B. oleracea and B. napus. Of these, 2,701 markers that produced single amplicons were putative single-locus markers in the B. napus genome. Finally, a set of 230 high-quality single-locus SSR markers were established and assigned to the 19 linkage groups of B. napus using a segregating population with 154 DH individuals. A subset of 78 selected single-locus SSR markers was proved to be highly stable and could successfully discriminate each of the 45 inbred lines and hybrids. In addition, most of the 230 SSR markers showed the single-locus nature in at least one of the Brassica species of the U’s triangle besides B. napus. These results indicated that this set of single-locus SSR markers has a wide range of coverage with excellent stability and would be useful for gene tagging, sequence scaffold assignment, comparative mapping, diversity analysis, variety identification and association mapping in Brassica species.  相似文献   
138.
139.
140.
Tropical rainforests in South‐East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag‐based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south‐western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28–0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号