首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   119篇
  免费   2篇
  2022年   3篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   8篇
  2007年   7篇
  2006年   7篇
  2005年   4篇
  2004年   6篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   2篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   7篇
  1988年   1篇
  1987年   1篇
  1983年   1篇
排序方式: 共有121条查询结果,搜索用时 171 毫秒
51.
We used confocal microscopy to evaluate nuclear dynamics in mature, growing hyphae of Neurospora crassa whose nuclei expressed histone H1-tagged green fluorescent protein (GFP). In addition to the H1-GFP wild-type (WT) strain, we examined nuclear displacement (passive transport) in four mutants deficient in microtubule-related motor proteins (ro-1, ro-3, kin-1, and a ro-1 kin-1 double mutant). We also treated the WT strain with benomyl and cytochalasin A to disrupt microtubules and actin microfilaments, respectively. We found that the degree of nuclear displacement in the subapical regions of all strains correlated with hyphal elongation rate. The WT strain and that the ro-1 kin-1 double mutant showed the highest correlation between nuclear movement and hyphal elongation. Although most nuclei seemed to move forward passively, presumably carried by the cytoplasmic bulk flow, a small proportion of the movement detected was either retrograde or accelerated anterograde. The absence of a specific microtubule motor in the mutants ro-1, ro-3, or kin-1 did not prevent the anterograde and retrograde migration of nuclei; however, in the ro-1 kin-1 double mutant retrograde migration was absent. In the WT strain, almost all nuclei were elongated, whereas in all other strains a majority of nuclei were nearly spherical. With only one exception, a sizable exclusion zone was maintained between the apex and the leading nucleus. The ro-1 mutant showed the largest nucleus exclusion zone; only the treatment with cytochalasin A abolished the exclusion zone. In conclusion, the movement and distribution of nuclei in mature hyphae appear to be determined by a combination of forces, with cytoplasmic bulk flow being a major determinant. Motor proteins probably play an active role in powering the retrograde or accelerated anterograde migrations of nuclei and may also contribute to passive anterograde displacement by binding nuclei to microtubules.Organelle movement and positioning are important aspects of cell growth and differentiation (19, 20, 27, 35). Movement and positioning of nuclei are especially important because of their implications in mitotic divisions during hyphal growth and asexual sporulation (conidiation), as well as fertilization events leading to meiosis and ascospore formation during sexual development (1, 3, 33). In yeast, nuclei move comparatively short distances (20, 32), whereas in filamentous fungi nuclei are typically transported over long distances within hyphae (1, 34, 35).Movement of nuclei in fungal cells may be either an active or a passive process. Early studies of filamentous fungi showed nuclei uniformly distributed along the entire hypha; they appeared to move with the growing hyphal apex, keeping a more or less constant distance from the cell tip. Such evidence pointed to passive displacement of nuclei by cytoplasmic bulk flow (10-12, 24), a role confirmed in our recent study on the dynamics of the microtubular cytoskeleton (28) and supported by studies with injected lipid droplets (17). Upon the discovery of motor proteins and their role in nuclear migration and positioning in filamentous fungi, attention was primarily focused on the participation of motors in nuclear events, including the movement of nuclei during hyphal extension (15, 25, 26, 29, 37), while the role of cytoplasmic bulk flow was largely discounted or disregarded.Whereas much effort has been directed toward the characterization of the components involved in motor-driven nuclear transport, the relative importance of passive nuclear propulsion has remained an open question. For the purpose of distinguishing clearly between active migration and passive displacement, we will consider “migration” to mean an active, motor-dependent process, while “displacement” will refer to passive transport of nuclei within the hypha. “Movement” refers either to active or passive transport of nuclei through hyphae. Here, we used strains of Neurospora crassa whose nuclei were tagged with green fluorescent protein (GFP) to examine the dynamics and distribution of nuclei in growing hyphae. In addition to evaluating nuclear movement in a wild-type (WT) strain, we examined the dynamics of nuclear movement in mutants defective in microtubule-related motor proteins: a ro-1 mutant for its deficiency in the heavy chain of dynein, a ro-3 mutant deficient in the dynactin p150glued subunit, a kin-1 mutant deficient in conventional kinesin, and a ro-1 kin-1 a dynein-kinesin double mutant. We also tested the effect of drugs that inhibit specifically microtubules and actin microfilaments. Our study demonstrates that passive displacement plays a major role in nuclear dynamics in growing hyphae of N. crassa.  相似文献   
52.
A cytochrome P450BM3‐catalyzed reaction system linked by a two‐step cofactor regeneration was investigated in a cell‐free system. The two‐step cofactor regeneration of redox cofactors, NADH and NADPH, was constructed by NAD+‐dependent bacterial glycerol dehydrogenase (GLD) and bacterial soluble transhydrogenase (STH) both from Escherichia coli. In the present system, the reduced cofactor (NADH) was regenerated by GLD from the oxidized cofactor (NAD+) using glycerol as a sacrificial cosubstrate. The reducing equivalents were subsequently transferred to NADP+ by STH as a cycling catalyst. The resultant regenerated NADPH was used for the substrate oxidation catalyzed by cytochrome P450BM3. The initial rate of the P450BM3‐catalyzed reaction linked by the two‐step cofactor regeneration showed a slight increase (approximately twice) when increasing the GLD units 10‐fold under initial reaction conditions. In contrast, a 10‐fold increase in STH units resulted in about a 9‐fold increase in the initial reaction rate, implying that transhydrogenation catalyzed by STH was the rate‐determining step. In the system lacking the two‐step cofactor regeneration, 34% conversion of 50 μM of a model substrate (p‐nitrophenoxydecanoic acid) was attained using 50 μM NADPH. In contrast, with the two‐step cofactor regeneration, the same amount of substrate was completely converted using 5 μM of oxidized cofactors (NAD+ and NADP+) within 1 h. Furthermore, a 10‐fold dilution of the oxidized cofactors still led to approximately 20% conversion in 1 h. These results indicate the potential of the combination of GLD and STH for use in redox cofactor recycling with catalytic quantities of NAD+ and NADP+. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   
53.
In periodontitis, polymorphonuclear leucocytes (PMNs) are activated. They entrap and eliminate pathogens by releasing neutrophil extracellular traps (NETs). Abnormal NET degradation is part of a pro-inflammatory status, affecting co-morbidities such as cardiovascular disease. We aimed to investigate the ex vivo NET degradation capacity of plasma from periodontitis patients compared to controls (part 1) and to quantify NET degradation before and after periodontal therapy (part 2). Fresh NETs were obtained by stimulating blood-derived PMNs with phorbol 12-myristate 13-acetate. Plasma samples from untreated periodontitis patients and controls were incubated for 3 h onto freshly generated NETs (part 1). Similarly, for part 2, NET degradation was studied for 91 patients before and 3, 6 and 12 mo after non-surgical periodontal therapy with and without adjunctive systemic antibiotics. Finally, NET degradation was fluorospectrometrically quantified. NET degradation levels did not differ between periodontitis patients and controls, irrespective of subject-related background characteristics. NET degradation significantly increased from 65.6 ± 1.7% before periodontal treatment to 75.7 ± 1.2% at 3 mo post periodontal therapy, and this improvement was maintained at 6 and 12 mo, irrespective of systemic usage of antibiotics. Improved NET degradation after periodontitis treatment is another systemic biomarker reflecting a decreased pro-inflammatory status, which also contributes to an improved cardiovascular condition.  相似文献   
54.
Septum formation in Neurospora crassa was studied by fluorescent tagging of actin, myosin, tropomyosin, formin, fimbrin, BUD-4, and CHS-1. In chronological order, we recognized three septum development stages: 1) septal actomyosin tangle (SAT) assembly, 2) contractile actomyosin ring (CAR) formation, 3) CAR constriction together with plasma membrane ingrowth and cell wall construction. Septation began with the assembly of a conspicuous tangle of cortical actin cables (SAT) in the septation site >5 min before plasma membrane ingrowth. Tropomyosin and myosin were detected as components of the SAT from the outset. The SAT gradually condensed to form a proto-CAR that preceded CAR formation. During septum development, the contractile actomyosin ring remained associated with the advancing edge of the septum. Formin and BUD-4 were recruited during the transition from SAT to CAR and CHS-1 appeared two min before CAR constriction. Actin patches containing fimbrin were observed surrounding the ingrowing septum, an indication of endocytic activity. Although the trigger of SAT assembly remains unclear, the regularity of septation both in space and time gives us reason to believe that the initiation of the septation process is integrated with the mechanisms that control both the cell cycle and the overall growth of hyphae, despite the asynchronous nature of mitosis in N. crassa.  相似文献   
55.

Background

Several lines of evidence indicate that memory loss represents a synaptic failure caused by soluble amyloid β (Aβ) oligomers. However, the pathological relevance of Aβ oligomers (AβOs) as the trigger of synaptic or neuronal degeneration, and the possible mechanism underlying the neurotoxic action of endogenous AβOs remain to be determined.

Results

To specifically target toxic AβOs in vivo, monoclonal antibodies (1A9 and 2C3) specific to them were generated using a novel design method. 1A9 and 2C3 specifically recognize soluble AβOs larger than 35-mers and pentamers on Blue native polyacrylamide gel electrophoresis, respectively. Biophysical and structural analysis by atomic force microscopy (AFM) revealed that neurotoxic 1A9 and 2C3 oligomeric conformers displayed non-fibrilar, relatively spherical structure. Of note, such AβOs were taken up by neuroblastoma (SH-SY5Y) cell, resulted in neuronal death. In humans, immunohistochemical analysis employing 1A9 or 2C3 revealed that 1A9 and 2C3 stain intraneuronal granules accumulated in the perikaryon of pyramidal neurons and some diffuse plaques. Fluoro Jade-B binding assay also revealed 1A9- or 2C3-stained neurons, indicating their impending degeneration. In a long-term low-dose prophylactic trial using active 1A9 or 2C3 antibody, we found that passive immunization protected a mouse model of Alzheimer's disease (AD) from memory deficits, synaptic degeneration, promotion of intraneuronal AβOs, and neuronal degeneration. Because the primary antitoxic action of 1A9 and 2C3 occurs outside neurons, our results suggest that extracellular AβOs initiate the AD toxic process and intraneuronal AβOs may worsen neuronal degeneration and memory loss.

Conclusion

Now, we have evidence that HMW-AβOs are among the earliest manifestation of the AD toxic process in mice and humans. We are certain that our studies move us closer to our goal of finding a therapeutic target and/or confirming the relevance of our therapeutic strategy.  相似文献   
56.
57.
In primates, tail length is subject to wide variation, and the tail may even be absent. Tail length varies greatly between each species group of the genus Macaca, which is explained by climatic factors and/or phylogeographic history. Here, tail length variability was studied in hybrids of the Japanese (M. fuscata) and Taiwanese (Macaca cyclopis) macaque, with various degrees of hybridization being evaluated through autosomal allele typing. Relative tail length (percent of crown–rump length) correlated well with the number of caudal vertebrae. Length profiles of caudal vertebrae of hybrids and parent species revealed a common pattern: the length of several proximal-most vertebrae do not differ greatly; then from the third or fourth vertebra, the length rapidly increases and peaks at around the fifth to seventh vertebra; then the length plateaus for several vertebrae and finally shows a gentle decrease. As the number of caudal vertebrae and relative tail length increase, peak vertebral length and lengths of proximal vertebrae also increase, except that of the first vertebra, which only shows a slight increase. Peak vertebral length and the number of caudal vertebrae explained 92?% of the variance in the relative tail length of hybrids. Relative tail length correlated considerably well with the degree of hybridization, with no significant deviation from the regression line being observed. Thus, neither significant heterosis nor hybrid depression occurred.  相似文献   
58.
After translation, Ras proteins undergo a series of modifications at their C-termini. This post-translational C-terminal processing is essential for Ras to become functional, but it remains unknown whether and how Ras C-terminal processing is regulated. Here we show that the C-terminal processing and subsequent plasma membrane localization of H-Ras as well as the activation of the downstream signaling pathways by H-Ras are prevented by JNK inhibition. Conversely, JNK activation by ultraviolet irradiation resulted in promotion of C-terminal processing of H-Ras. Furthermore, increased cell density promoted C-terminal processing of H-Ras most likely through an autocrine/paracrine mechanism, which was also blocked under JNK-inhibited condition. Ras C-terminal processing was sensitive to JNK inhibition in the case of H- and N-Ras but not K-Ras, and in a variety of cell types. Thus, our results suggest for the first time that Ras C-terminal processing is a regulated mechanism in which JNK is involved.  相似文献   
59.
Urine is involved in sexual communication in New World monkeys and lemurs, but most studies of the role of olfaction in sexual communication in Old World monkeys have focused on vaginal secretions rather than urine. We investigated whether female urine promotes male sexual behaviors (approaches and inspections of genital area) in Japanese macaques (Macaca fuscata). We used a sequential presentation paradigm in behavioral experiments, presenting unfamiliar female urine and control cotton swabs to males living in a social group with cycling females. We tested whether males (N = 3) showed more processing behaviors (licking, sniffing, tasting) toward female urine (22 stimuli per male from prefertile, fertile, and postfertile phases, based on urinary estrone and progesterone conjugate profiles) than control odor (8 stimuli per male). We then compared male sexual behaviors toward resident females pre- and post-exposure to stimuli and in relation to the females’ reproductive status (perifertile, nonfertile, and pregnancy periods, based on fecal estrone and progesterone conjugate profiles). We found that males showed significantly more processing behaviors toward urine stimuli than to controls but that male behavior did not vary across urine samples from prefertile, fertile, and postfertile phases. Exposure to unfamiliar female urine stimuli did not modulate male approaches to and inspections of resident females at any stage of the female reproductive cycle. Although our study is limited by its small sample size, the results suggest that female urine contains compounds that males detect, but we found no evidence that female urine is related to male sexual behaviors.  相似文献   
60.
Matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) function to remodel the pericellular environment. Their activation and regulation are associated with synaptic physiology and pathology. Here, we investigated whether MMP-2 and MMP-9 are involved in the rewarding effects of and sensitization to methamphetamine (METH) in animals, in which the remodelling of neural circuits may play a crucial role. Repeated METH treatment induced behavioural sensitization, which was accompanied by an increase in MMP-2 and MMP-9 activity in the brain. In MMP-2- and MMP-9-deficient mice [MMP-2-(-/-) and MMP-9-(-/-)], METH-induced behavioural sensitization and conditioned place preference, a measure of the rewarding effect, as well as METH-increased dopamine release in the nucleus accumbens (NAc) were attenuated compared with those in wild-type mice. In contrast, infusion of purified human MMP-2 into the NAc significantly potentiated the METH-increased dopamine release. The [(3)H]dopamine uptake into striatal synaptosomes was reduced in wild-type mice after repeated METH treatment, but METH-induced changes in [(3)H]dopamine uptake were significantly attenuated in MMP-2-(-/-) and MMP-9-(-/-) mice. These results suggest that both MMP-2 and MMP-9 play a crucial role in METH-induced behavioural sensitization and reward by regulating METH-induced dopamine release and uptake in the NAc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号