首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   383篇
  免费   60篇
  2021年   3篇
  2017年   7篇
  2016年   10篇
  2015年   12篇
  2014年   23篇
  2013年   12篇
  2012年   15篇
  2011年   30篇
  2010年   16篇
  2009年   20篇
  2008年   19篇
  2007年   19篇
  2006年   15篇
  2005年   10篇
  2004年   9篇
  2003年   11篇
  2002年   15篇
  2001年   8篇
  2000年   13篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1993年   5篇
  1992年   9篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1988年   6篇
  1987年   7篇
  1986年   4篇
  1985年   7篇
  1984年   9篇
  1983年   2篇
  1981年   2篇
  1980年   5篇
  1979年   4篇
  1978年   3篇
  1974年   2篇
  1973年   2篇
  1970年   2篇
  1968年   2篇
  1923年   4篇
  1919年   5篇
  1917年   3篇
  1915年   2篇
  1909年   4篇
  1908年   3篇
  1904年   2篇
  1900年   4篇
  1899年   3篇
排序方式: 共有443条查询结果,搜索用时 31 毫秒
81.
82.
Biochemical characterization of cholesterol-reducing Eubacterium.   总被引:3,自引:2,他引:1       下载免费PDF全文
We characterized two isolates of cholesterol-reducing Eubacterium by conducting conventional biochemical tests and by testing various sterols and glycerolipids as potential growth factors. In media containing cholesterol and plasmenylethanolamine, the tests for nitrate reduction, indole production, and gelatin and starch hydrolyses were negative, and no acid was produced from any of 22 carbohydrates. Both isolates hydrolyzed esculin to esculetin, indicating beta-glycosidase activity. In addition to plasmenylethanolamine, five other lipids which contain an alkenyl ether residue supported growth of Eubacterium strain 403 in a lecithin-cholesterol base medium. Of six steroids tested, cholesterol, cholest-4-en-3-one, cholest-4-en-3 beta-ol (allocholesterol), and androst-5-en-3 beta-ol-17-one supported growth of Eubacterium strain 403. All four steroids were reduced to the 3 beta-ol, 5 beta-H products. The delta 5 steroids cholest-5-en-3 alpha-ol (epicholesterol) and 22,23-bisnor-5-cholenic acid-3-beta-ol were not reduced and did not support growth of the Eubacterium strain.  相似文献   
83.
After oral administration of a mixture of [1,2(n)-3H]cholesterol and [4-14C]cholesterol to a baboon, fecal coprostanone had a 46% lower 3H/14C ratio than the dose administered. Loss of 3H by enolization of the 3-ketone could account for the decrease in 3H/14C. If [7(n)-3H]cholesterol was administered instead of [1,2(n)-3H]cholesterol a 23% loss of 3H from coprostanone was found. Procedures requiring measurement of 3H-coprostanone derived from [1,2(n)-3H]- or [7(n)-3H]cholesterol could be seriously in error unless an appropriate correction for loss of 3H is made.  相似文献   
84.
One of the interests of ICPEMC is to identify situations in which the possible induction of inherited defects in man by mutagen exposure could actually be studied. The large-scale use of mutagenic drugs in field programmes against schistosomiasis, mainly during the 1970's, was considered a possible case. An ICPEMC task group approached the problem by (1) updating the genetic toxicology data base for antischistosomal drugs, and (2) reviewing possible study areas. Expertise was combined from genetic toxicology, mutation epidemiology and tropical medicine. It was considered that: (a) if any, hycanthone would be the most appropriate candidate drug for study; (b) it would be virtually impossible to meet the basic requirements of an appropriate mutation epidemiology study, in endemic countries; (c) as more defined genetic endpoints would be selected (e.g. sentinel phenotypes) the required large sample sizes would seem prohibitive, since documentation on past programmes is limited and local demography would render the reliable tracking of substantial numbers of offspring of treated persons an almost impossible task; (d) in most endemic countries proper diagnosis and registration of inherited defects is largely lacking; (e) the problems encountered in demonstrating inherited effects in humans after heavy or chronic exposure to established animal mutagens such as ionizing radiation and cancer chemotherapy, in combination with the ambiguous nature of the animal germ cell data with hycanthone, do not particularly warrant large expectations; (f) since non-mutagenic antischistosomal drugs are now in use, the problem is academic and of low priority in the endemic countries whose medical and research resources are often limited. Thus, studying offspring of hycanthone-treated people to demonstrate the mutagenic potential of the drug in man is not a viable enterprise.  相似文献   
85.
The response of photosynthesis to an increase in photon flux density (PFD) from low to higher PFD was investigated using spinach (Spinacia oleracea L.). The time-course for this response was qualitatively similar to that observed for a dark-to-high-PFD transition, showing an initial, rapid increase in photosynthesis over the first minute or so, followed by a slower increase lasting 5 to 10 minutes. This slow increase was approximately exponential and could be linearized using a semilogarithmic plot. The relaxation time (τ) for this slow phase was found to be a function of the starting PFD value. At starting PFD values below approximately 135 micromoles per square meter per second (including darkness), τ for the slow phase was approximately twice that observed for starting PFD values above 135 micromoles per square meter per second. This indicates a slower approach to steady state for leaves starting at PFD values below this threshold and a greater loss of potential photosynthesis. τ was relatively insensitive to starting PFD values below or above this transition value. The contribution of the slow phase to the total increase in photosynthesis following a low-to-high-PFD transition increased approximately exponentially with time at the lower PFD. The τ for the increase in the contribution of slow phase was determined to be 10.1 minutes. The implications of these data for activation and deactivation of ribulose-1,5-bisphosphate carboxylase/oxygenase and for the functioning of the leaf in a fluctuating light environment are discussed.  相似文献   
86.
Selective breeding of baboons has produced families with increased plasma levels of large high density lipoproteins (HDL1) and very low (VLDL) and low (LDL) density lipoproteins when the animals consume a diet enriched in cholesterol and saturated fat. High HDL1 baboons have a slower cholesteryl ester transfer, which may account for the accumulation of HDL1, but not of VLDL and LDL. To investigate the mechanism of accumulation of VLDL + LDL in plasma of the high HDL1 phenotype, we selected eight half-sib pairs of baboons, one member of each pair with high HDL1, the other member with little or no HDL1 on the same high cholesterol, saturated fat diet. Baboons were fed a chow diet and four experimental diets consisting of high and low cholesterol with corn oil, and high and low cholesterol with lard, each for 6 weeks, in a crossover design. Plasma lipids and lipoproteins and hepatic mRNA levels were measured on each diet. HDL1 phenotype, type of dietary fat, and dietary cholesterol affected plasma cholesterol and apolipoprotein (apo) B concentrations, whereas dietary fat alone affected plasma triglyceride and apoA-I concentrations. HDL1 phenotype and dietary cholesterol alone did not influence hepatic mRNA levels, whereas dietary lard, compared to corn oil, significantly increased hepatic apoE mRNA levels and decreased hepatic LDL receptor and HMG-CoA synthase mRNA levels. Hepatic apoA-I message was associated with cholesterol concentration in HDL fractions as well as with apoA-I concentrations in the plasma or HDL. However, hepatic apoB message level was not associated with plasma or LDL apoB levels. Total plasma cholesterol, including HDL, was negatively associated with hepatic LDL receptor and HMG-CoA synthase mRNA levels. However, compared with low HDL1 baboons, high HDL1 baboons had higher concentrations of LDL and HDL cholesterol at the same hepatic mRNA levels. These studies suggest that neither overproduction of apoB from the liver nor decreased hepatic LDL receptor levels cause the accumulation of VLDL and LDL in the plasma of high HDL1 baboons. These studies also show that, in spite of high levels of VLDL + LDL and HDL1, the high HDL1 baboons had higher levels of mRNA for LDL receptor and HMG-CoA synthase. This paradoxical relationship needs further study to understand the pathophysiology of VLDL and LDL accumulation in the plasma of animals with the high HDL1 phenotype.  相似文献   
87.
88.
The manufacture of recombinant proteins at industrially relevant levels requires technologies that can engineer stable, high expressing cell lines rapidly, reproducibly and with relative ease. Commonly used methods incorporate transfection of mammalian cell lines with plasmid DNA containing the gene of interest. Identifying stable high expressing transfectants is normally laborious and time consuming. To improve this process, the ACE System has been developed based on pre‐engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for the targeted transfection of single or multiple genes and eliminates the need for random integration into native host chromosomes. To illustrate the utility of the ACE System in generating stable, high expressing cell lines, CHO based candidate cell lines were generated to express a human monoclonal IgG1 antibody. Candidate cell lines were generated in under 6 months and expressed over 1 g/L and with specific productivities of up to 45 pg/cell/day under non‐fed, non‐optimized shake flask conditions. These candidate cell lines were shown to have stable expression of the monoclonal antibody for up to 70 days of continuous culture. The results of this study demonstrate that clonal, stable monoclonal antibody expressing CHO based cell lines can be generated by the ACE System rapidly and perform competitively with those cell lines generated by existing technologies. The ACE System, therefore, provides an attractive and practical alternative to conventional methods of cell line generation. Biotechnol. Bioeng. 2009; 104: 540–553 © 2009 Wiley Periodicals, Inc.  相似文献   
89.
In order to maximize recombinant protein expression in mammalian cells many factors need to be considered such as transfection method, vector construction, screening techniques and culture conditions. In addition, the host cell line can have a profound effect on the protein expression. However, auditioning or directly comparing host cell lines for optimal protein expression may be difficult since most transfection methods are based on random integration of the gene of interest into the host cell genome. Thus it is not possible to determine whether differences in expression between various host cell lines are due to the phenotype of the host cell itself or genetic factors such as gene copy number or gene location. To improve cell line generation, the ACE System was developed based on pre‐engineered artificial chromosomes with multiple recombination acceptor sites. This system allows for targeted transfection and has been effectively used to rapidly generate stable CHO cell lines expressing high levels of monoclonal antibody. A key feature of the ACE System is the ability to isolate and purify ACEs containing the gene(s) of interest and transfect the same ACEs into different host cell lines. This feature allows the direct auditioning of host cells since the host cells have been transfected with ACEs that contain the same number of gene copies in the same genetic environment. To investigate this audition feature, three CHO host cell lines (CHOK1SV, CHO‐S and DG44) were transfected with the same ACE containing gene copies of a human monoclonal IgG1 antibody. Clonal cell lines were generated allowing a direct comparison of antibody expression and stability between the CHO host cells. Results showed that the CHOK1SV host cell line expressed antibody at levels of more than two to five times that for DG44 and CHO‐S host cell lines, respectively. To confirm that the ACE itself was not responsible for the low antibody expression seen in the CHO‐S based clones, the ACE was isolated and purified from these cells and transfected back into fresh CHOK1SV cells. The resulting expression of the antibody from the ACE newly transfected into CHOK1SV increased fivefold compared to its expression in CHO‐S and confirmed that the differences in expression between the different CHO host cells was due to the cell phenotype rather than differences in gene copy number and/or location. These results demonstrate the utility of the ACE System in providing a rapid and direct technique for auditioning host cell lines for optimal recombinant protein expression. Biotechnol. Bioeng. 2009; 104: 526–539 © 2009 Wiley Periodicals, Inc.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号