首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   854篇
  免费   86篇
  2019年   3篇
  2018年   10篇
  2017年   7篇
  2016年   12篇
  2015年   16篇
  2014年   19篇
  2013年   49篇
  2012年   35篇
  2011年   33篇
  2010年   30篇
  2009年   19篇
  2008年   47篇
  2007年   33篇
  2006年   36篇
  2005年   42篇
  2004年   39篇
  2003年   38篇
  2002年   40篇
  2001年   41篇
  2000年   32篇
  1999年   26篇
  1998年   16篇
  1997年   12篇
  1996年   17篇
  1995年   6篇
  1994年   13篇
  1993年   7篇
  1992年   20篇
  1991年   16篇
  1990年   17篇
  1989年   16篇
  1988年   21篇
  1987年   27篇
  1986年   24篇
  1985年   14篇
  1984年   9篇
  1983年   8篇
  1982年   4篇
  1981年   4篇
  1979年   7篇
  1978年   7篇
  1977年   4篇
  1975年   4篇
  1974年   10篇
  1973年   12篇
  1972年   3篇
  1971年   5篇
  1970年   12篇
  1969年   3篇
  1968年   3篇
排序方式: 共有940条查询结果,搜索用时 31 毫秒
61.
Pancreatic amyloid formation by islet amyloid polypeptide (IAPP) is a hallmark pathological feature of type 2 diabetes. IAPP is stored in the secretory granules of pancreatic beta-cells and co-secreted with insulin to maintain glucose homeostasis. IAPP is innocuous under homeostatic conditions but imbalances in production or processing of IAPP may result in homodimer formation leading to the rapid production of cytotoxic oligomers and amyloid fibrils. The consequence is beta-cell dysfunction and the accumulation of proteinaceous plaques in and around pancreatic islets. Beta-site APP-cleaving enzyme 2, BACE2, is an aspartyl protease commonly associated with BACE1, a related homolog responsible for amyloid processing in the brain and strongly implicated in Alzheimer’s disease. Herein, we identify two distinct sites of the mature human IAPP sequence that are susceptible to BACE2-mediated proteolytic activity. The result of proteolysis is modulation of human IAPP fibrillation and human IAPP protein degradation. These results suggest a potential therapeutic role for BACE2 in type 2 diabetes-associated hyperamylinaemia.  相似文献   
62.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   
63.
Legumain/asparaginyl endopeptidase (EC 3.4.22.34) is a novel cysteine protease that is abundantly expressed in the late endosomes and lysosomes of renal proximal tubular cells. Recently, emerging evidence has indicated that legumain might play an important role in control of extracellular matrix turnover in various pathological conditions such as tumor growth/metastasis and progression of atherosclerosis. We initially found that purified legumain can directly degrade fibronectin, one of the main components of the extracellular matrix, in vitro. Therefore, we examined the effect of legumain on fibronectin degradation in cultured mouse renal proximal tubular cells. Fibronectin processing can be inhibited by chloroquine, an inhibitor of lysosomal degradation, and can be enhanced by the overexpression of legumain, indicating that fibronectin degradation occurs in the presence of legumain in lysosomes from renal proximal tubular cells. Furthermore, in legumain-deficient mice, unilateral ureteral obstruction (UUO)-induced renal interstitial protein accumulation of fibronectin and renal interstitial fibrosis were markedly enhanced. These findings indicate that legumain might have an important role in extracellular matrix remodeling via the degradation of fibronectin in renal proximal tubular cells.  相似文献   
64.
A sample treatment procedure and high-sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for quantitative determination of fexofenadine in human plasma was developed for a microdose clinical trial with a cold drug, i.e., a non-radioisotope-labeled drug. Fexofenadine and terfenadine, as internal standard, were extracted from plasma samples using a 96-well solid-phase extraction plate (Oasis HLB). Quantitation was performed on an ACQUITY UPLC system and an API 5000 mass spectrometer by multiple reaction monitoring. Chromatographic separation was achieved on an XBridge C18 column (100 mm x 2.1 mm i.d., particle size 3.5 microm) using acetonitrile/2 mM ammonium acetate (91:9, v/v) as the mobile phase at a flow rate of 0.6 ml/min. The analytical method was validated in accordance with the FDA guideline for validation of bioanalytical methods. The calibration curve was linear in the range of 10-1000 pg/ml using 200 microl of plasma. Analytical method validation for the clinical dose, for which the calibration curve was linear in the range of 1-500 ng/ml using 20 microl of plasma, was also conducted. Each method was successfully applied for making determinations in plasma using LC/ESI-MS/MS after administration of a microdose (100 microg solution) and a clinical dose (60 mg dose) in eight healthy volunteers.  相似文献   
65.
Heat shock protein 105 (Hsp105) is a molecular chaperone, and the isoforms Hsp105α and Hsp105β exhibit distinct functions with different subcellular localizations. Hsp105β localizes in the nucleus and induces the expression of the major heat shock protein Hsp70, whereas cytoplasmic Hsp105α is less effective in inducing Hsp70 expression. Hsp105 shuttles between the cytoplasm and the nucleus; the subcellular localization is governed by the relative activities of the nuclear localization signal (NLS) and nuclear export signal (NES). Here, we show that nuclear accumulation of Hsp105α but not Hsp105β is involved in Adriamycin (ADR) sensitivity. Knockdown of Hsp105α induces cell death at low ADR concentration, at which ADR is less effective in inducing cell death in the presence of Hsp105α. Of note, Hsp105 is localized in the nucleus under these conditions, even though Hsp105β is not expressed, indicating that Hsp105α accumulates in the nucleus in response to ADR treatment. The exogenously expressed Hsp105α but not its NLS mutant localizes in the nucleus of ADR-treated cells. In addition, the expression level of the nuclear export protein chromosomal maintenance 1 (CRM1) was decreased by ADR treatment of cells, and CRM1 knockdown caused nuclear accumulation of Hsp105α both in the presence and absence of ADR. These results indicating that Hsp105α accumulates in the nucleus in a manner dependent on the NLS activity via the suppression of nuclear export. Our findings suggest a role of nuclear Hsp105α in the sensitivity against DNA-damaging agents in tumor cells.  相似文献   
66.
Chordin is a bone morphogenetic protein (BMP) inhibitor that has been identified as a factor dorsalizing the Xenopus embryo. A novel secreted protein, CHL (for chordin-like), with significant homology to chordin, was isolated from mouse bone marrow stromal cells. Injection of CHL RNA into Xenopus embryos induced a secondary axis. Recombinant CHL protein inhibited the BMP4-dependent differentiation of embryonic stem cells in vitro and interacted directly with BMPs, similar to chordin. However, CHL also weakly bound to TGFbetas. In situ hybridization revealed that the mouse CHL gene, located on the X chromosome, was expressed predominantly in mesenchyme-derived cell types: (1) the dermatome and limb bud mesenchyme and, later, the subdermal mesenchyme and the chondrocytes of the developing skeleton during embryogenesis and (2) a layer of fibroblasts/connective tissue cells in the gastrointestinal tract, the thick straight segments of kidney tubules, and the marrow stromal cells in adults. An exception was expression in the neural cells of the olfactory bulb and cerebellum. Interestingly, the spatiotemporal expression patterns of CHL were distinct from those of chordin in many areas examined. Thus, CHL may serve as an important BMP regulator for differentiating mesenchymal cells, especially during skeletogenesis, and for developing specific neurons.  相似文献   
67.
The crystal structure of the catalytic domain of alkaline cellulase K was determined at 1.9 A resolution. Because of the most alkaliphilic nature and it's highest activity at pH 9.5, it is used commercially in laundry detergents. An analysis of the structural bases of the alkaliphilic character of the enzyme suggested a mechanism similar to that previously proposed for alkaline proteases, that is, an increase in the number of Arg, His, and Gln residues, and a decrease in Asp and Lys residues. Some ion pairs were formed by the gained Arg residues, which is similar to what has been found in the alkaline proteases. Lys-Asp ion pairs are disfavored and partly replaced with Arg-Asp ion pairs. The alkaline adaptation appeared to be a remodeling of ion pairs so that the charge balance is kept in the high pH range.  相似文献   
68.
Small cytoplasmic RNA (scRNA) is a metabolically stable homologue of mammalian SRP RNA that contains an Alu-like domain. The Bacillus subtilis histone-like protein HBsu can bind this domain. We demonstrate here that repressing the level of HBsu results in slow growth and the accumulation of precursor of beta-lactamase fusion proteins having the signal sequence of alkaline protease, penicillin binding protein 5* (PBP5*) or CGTase. The degree of the translocation defect varied among the various signal sequences tested. A pulse-chase experiment showed that processing the alpha-amylase signal sequence is significantly inhibited in HBsu-depleted cells. Northern blot analysis indicated that repressing the HBsu gene induces scRNA upregulation, indicating that the defective translocation of presecretory proteins is not due to a reduced scRNA level. The data presented here suggest that HBsu plays a pivotal role in SRP function rather than simply stabilizing the other SRP components such as scRNA.  相似文献   
69.
Transglutaminase (TGase) from the actinomycete Streptomyces mobaraensis is a useful enzyme in the food industry, and development of an efficient production system for it would be desirable. Herein we report secretion of TGase in an enzymatically active form by methylotrophic yeasts as expression hosts. Secretory production of active TGase required a pro-peptide from TGase. When an artificial Kex2-endopeptidase recognition site was placed between the pro-peptide and mature TGase, secretion and in vitro maturation of TGase depended on Kex2-dependent cleavage. Unexpectedly, coexpression of unlinked pro-peptide with mature TGase yielded efficient secretion of the active enzyme. These results indicate that the pro-peptide from TGase functions not only in an intramolecular but also in an intermolecular manner. Site-directed mutagenesis of putative N-glycosylation sites increased the productivity of the active TGase further. A recombinant Candida boidinii strain was found to secrete active TGase up to 1.83 U/ml (about 90 mg/l) after 119 h of cultivation.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号