首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1008篇
  免费   48篇
  国内免费   1篇
  2023年   2篇
  2022年   4篇
  2021年   13篇
  2020年   6篇
  2019年   13篇
  2018年   14篇
  2017年   14篇
  2016年   19篇
  2015年   22篇
  2014年   28篇
  2013年   52篇
  2012年   54篇
  2011年   54篇
  2010年   36篇
  2009年   38篇
  2008年   72篇
  2007年   71篇
  2006年   62篇
  2005年   66篇
  2004年   45篇
  2003年   51篇
  2002年   41篇
  2001年   29篇
  2000年   27篇
  1999年   22篇
  1998年   14篇
  1997年   5篇
  1996年   8篇
  1995年   9篇
  1994年   4篇
  1993年   9篇
  1992年   21篇
  1991年   17篇
  1990年   19篇
  1989年   15篇
  1988年   7篇
  1987年   2篇
  1986年   8篇
  1985年   14篇
  1984年   10篇
  1983年   9篇
  1982年   5篇
  1981年   7篇
  1980年   3篇
  1979年   6篇
  1977年   3篇
  1975年   3篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有1057条查询结果,搜索用时 31 毫秒
61.
Perlecan, a large heparan sulfate proteoglycan, is a component of the basement membrane and other extracellular matrices and has been implicated in multiple biological functions. Mutations in the perlecan gene (HSPG2) cause two classes of skeletal disorders: the relatively mild Schwartz-Jampel syndrome (SJS) and severe neonatal lethal dyssegmental dysplasia, Silverman-Handmaker type (DDSH). SJS is an autosomal recessive skeletal dysplasia characterized by varying degrees of myotonia and chondrodysplasia, and patients with SJS survive. The molecular mechanism underlying the chondrodystrophic myotonia phenotype of SJS is unknown. In the present report, we identify five different mutations that resulted in various forms of perlecan in three unrelated patients with SJS. Heterozygous mutations in two patients with SJS either produced truncated perlecan that lacked domain V or significantly reduced levels of wild-type perlecan. The third patient had a homozygous 7-kb deletion that resulted in reduced amounts of nearly full-length perlecan. Unlike DDSH, the SJS mutations result in different forms of perlecan in reduced levels that are secreted to the extracellular matrix and are likely partially functional. These findings suggest that perlecan has an important role in neuromuscular function and cartilage formation, and they define the molecular basis involved in the difference in the phenotypic severity between DDSH and SJS.  相似文献   
62.
63.
alpha-Synuclein is one of the major components of intracellular fibrillary aggregates in the brains of a subset of neurodegenerative disorders, including Parkinson's disease, dementia with Lewy bodies, multiple system atrophy, and Hallervorden-Spatz disease, which are referred to as alpha-synucleinopathies. We have shown previously (Fujiwara, H., Hasegawa, M., Dohmae, N., Kawashima, A., Masliah, E., Goldberg, M. S., Shen, J., Takio, K., and Iwatsubo, T. (2002) Nat. Cell Biol. 4, 160-164) that alpha-synuclein deposited in synucleinopathy brains is extensively phosphorylated at Ser-129 and migrates at 15 kDa. Here we examined the biochemical characteristics of the additional, higher molecular mass species of phosphorylated alpha-synuclein-positive polypeptides that also are recovered in the Sarkosyl-insoluble fraction of synucleinopathy and migrate at about 22 and 29 kDa. These 22 and 29 kDa bands were positive for three different anti-ubiquitin antibodies and comigrated perfectly with in vitro ubiquitinated alpha-synuclein that may correspond to mono- and diubiquitinated alpha-synuclein, respectively. Furthermore, cyanogen bromide cleavage of the 22 and 29 kDa polypeptides shifted the mobility to 19 and 26 kDa, respectively, and they retained immunoreactivity for both ubiquitin and alpha-synuclein. Finally, protein sequence analysis showed that the 19 kDa band contained two amino-terminal sequences of alpha-synuclein and ubiquitin. These results strongly suggest that phosphorylated alpha-synuclein is targeted to mono- and diubiquitination in synucleinopathy brains, which may have implications for mechanisms of these diseases.  相似文献   
64.
65.
The mammalian immune system has cytotoxic mechanisms, both cellular and humoral, that destroy the membrane integrity of target cells. The main effector molecules of these cytolytic mechanisms—perforin, used by killer lymphocytes, and the membrane attack complex (MAC) components of the complement system—share a unique module called the MAC/perforin module. Until now, both immunological cytotoxicity and the MAC/perforin module have been reported only in jawed vertebrates. Here, we report the identification of a protein containing the MAC/perforin module from the invertebrate cephalochordate, amphioxus (Branchiostoma belcheri), using expressed sequence tag (EST) analysis of the notochord. The deduced amino acid sequence of this molecule is most similar to the primary structure of human complement component C6 and is designated AmphiC6. AmphiC6 shares a unique modular structure, including the MAC/perforin module, with human C6 and other MAC components. Another EST clone predicts the presence of a thioester-containing protein with the closest structural similarity to vertebrate C3 (therefore designated AmphiC3). AmphiC3 retains most of the functionally important residues of vertebrate C3 and is shown by phylogenetic analysis to be derived directly from the common ancestor of vertebrate C3, C4, and C5. Only opsonic activity has been assigned to the invertebrate complement system until now. Therefore, this is the first molecular evidence for complement-mediated immunological cytotoxicity in invertebrates. Received: 24 August 2001 / Accepted: 12 November 2001  相似文献   
66.
To investigate the effects of lentinan from Lentinas edodes and polysaccharides from Agaricus blazei (ABPS) on the expression of cytochrome P450s (CYPs), lentinan (10 mg/kg/day) or ABPS (200 mg/kg/day) was administered to female BALB/c mice four times every other day by intraperitoneal injection. Lentinan and ABPS suppressed both the constitutive and 3-methylcholanthrene-induced CYP1A expression and ethoxyresorufin-O-deethylation activity in the liver.  相似文献   
67.
We analyzed the distribution and morphological characteristics of peroxisomes in the nematode Caenorhabditis elegans by routine electron microscopy, immunoelectron microscopy, and morphometry. Peroxisomes were mainly contained in the epithelial cells of the digestive tract and pharyngeal gland, but some were observed in other cells. Their shape varied from round to twisted. The matrix of most peroxisomes was coarse and uneven, and contained electron-dense nucleoids and frequently tubular substructures. The diameter of peroxisomes in the gut (0.185 micro m) was smaller than that in pharyngeal gland (0.262 micro m). The volume density of peroxisomes per 100 micro m(2) of cytoplasm was 1.86 in the gut and 1.75 in the pharyngeal gland. After treatment with clofibrate, the diameter of peroxisomes increased approximately 1.11-fold in the gut and 1.2-fold in the pharyngeal gland. The volume density of peroxisomes also increased by 2.2-fold in the gut and 2.6-fold in the pharyngeal gland. The labeling density for catalase-2 was almost identical between gut and pharyngeal gland peroxisomes. The results show that in C. elegans peroxisomes mainly distribute in the epithelial cells of the gut and pharyngeal gland. Peroxisomes of the pharyngeal gland are larger than those of the gut, but peroxisomes of both tissues contain catalase-2 at similar concentrations.  相似文献   
68.
69.
70.
Dendritic cells (DCs) are potent antigen-presenting cells (APCs). Among so-called professional APCs, only DCs can activate naive T cells to initiate immune response. To better understand molecular mechanisms underlying unique functions of DCs, we searched for genes specifically expressed in human DCs, using PCR-based cDNA subtraction in conjunction with differential screening. cDNAs generated from CD34(+) stem cell-derived CD1a(+) DC were subtracted with cDNA from monocytes and used for generation of a cDNA library. The cDNA library was differentially screened to select genes expressed in DCs more abundantly than in monocytes. We identified a gene encoding a protein composed of 244 amino acids, which we designated as DCNP1 (dendritic cell nuclear protein 1). In Northern blot analysis, DCNP1 mRNA was highly expressed in mature DCs and at a lower level in immature DCs. In contrast, monocytes and B cells do not express the gene. In multiple human tissue Northern blot analysis, expression of DCNP1 was detected in brain and skeletal muscle. To examine subcellular localization of DCNP1, we performed immunofluorescence analysis using an anti-DCNP1 polyclonal antibody and found the molecule to be localized mainly in the perinucleus. In an immunohistochemical analysis, we compared the expression of DCNP1 with CD68, a marker for DCs and macrophages, in spleen, lymph node, liver, and brain. While DCNP1-positive cells showed a similar tissue distribution to CD68-positive cells, the number of DCNP1-positive cells was much smaller than that of CD68-positive cells. Our findings are consistent with the proposal that DCNP1 is specifically expressed in DCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号