首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   3篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2012年   6篇
  2011年   3篇
  2010年   4篇
  2009年   4篇
  2008年   6篇
  2007年   1篇
  2006年   2篇
  2005年   1篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有41条查询结果,搜索用时 328 毫秒
31.
32.
The Notch pathway contributes to self-renewal of tumor-initiating cell and inhibition of normal colonic epithelial cell differentiation. Deregulated expression of Notch1 and Jagged1 is observed in colorectal cancer. Hairy/enhancer of split (HES) family, the most characterized targets of Notch, involved in the development of many cancers. In this study, we explored the role of Hes1 in the tumorigenesis of colorectal cancer. Knocking down Hes1 induced CRC cell senescence and decreased the invasion ability, whereas over-expression of Hes1 increased STAT3 phosphorylation activity and up-regulated MMP14 protein level. We further explored the expression of Hes1 in human colorectal cancer and found high Hes1 mRNA expression is associated with poor prognosis in CRC patients. These findings suggest that Hes1 regulates the invasion ability through the STAT3-MMP14 pathway in CRC cells and high Hes1 expression is a predictor of poor prognosis of CRC.  相似文献   
33.
Polyamines have long been implicated in plant growth and development, as well as adaptation to abiotic and biotic stress. As a general rule of thumb the higher the polyamine titers the better. However, their molecular roles in plant stress responses still remain obscure. It has been postulated that they could act through their catabolism, which generates molecules which may act as secondary messengers signalling networks of numerous developmental and stress adaptation processes. Recently it was shown that plant and mammalian polyamine catabolism share critical features, giving new insight in plant polyamine catabolism. In this review, the advances in genes and proteins of polyamine catabolism in plants is presented and compared to other models.Key words: polyamines, polyamine catabolism, polyamine oxidase, abiotic stress, ROS signaling  相似文献   
34.
Metastatic colorectal cancer remains a serious health concern with poor patient survival. Although 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) is the standard therapy for colorectal cancer, it has met with limited success. Recurrence of the tumor after chemotherapy could partly be explained by the enrichment of the chemo-resistant sub-population of cancer stem cells (CSCs) that possess the ability for self-renewal and differentiation into different lineages in the tumor. Therefore development of therapeutic strategies that target CSCs for successful treatment of this malignancy is warranted. The current investigation was undertaken to examine the effectiveness of the combination therapy of dasatinib (a Src inhibitor) and curcumin (a dietary agent with pleiotropic effect) in inhibiting the growth and other properties of carcinogenesis of chemo-resistant colon cancer cells that are enriched in CSCs sub-population. Remnants of spontaneous adenomas from APC Min +/- mice treated with dasatinib and/or curcumin were analyzed for several cancer stem cell markers (ALDH, CD44, CD133 and CD166). Human colon cancer cells HCT-116 (p53 wild type; K-ras mutant) and HT-29 (p53 mutant; K-ras wild type) were used to generate FOLFOX resistant (referred to as CR) cells. The effectiveness of the combination therapy in inhibiting growth, invasive potential and stemness was examined in colon cancer CR cells. The residual tumors from APC Min +/- mice treated with dasatinib and/or curcumin showed 80-90% decrease in the expression of the CSC markers ALDH, CD44, CD133, CD166. The colon cancer CR cells showed a higher expression of CSCs markers, cell invasion potential and ability to form colonospheres, compared to the corresponding parental cells. The combination therapy of dasatinib and curcumin demonstrated synergistic interactions in CR HCT-116 and CR HT-29 cells, as determined by Calcusyn analysis. The combinatorial therapy inhibited cellular growth, invasion and colonosphere formation and also reduced CSC population as evidenced by the decreased expression of CSC specific markers: CD133, CD44, CD166 and ALDH. Our data suggest that the combination therapy of dasatinib and curcumin may be a therapeutic strategy for re-emergence of chemo-resistant colon cancer by targeting CSC sub-population.  相似文献   
35.
Activity of the enzyme choline acetyltransferase (CAT), which mediates the synthesis of the neurotransmitter, acetylcholine, was increased up to 20- fold in spinal cord (SC) cells grown in culture with muscle cells for 2 wk. This increase was directly related to the duration of co-culture as well as to the cell density of both the SC and muscle involved and was not affected by the presence of the acetylcholine receptor blocking agent, α-bungarotoxin. Glutamic acid decarboxylase (GAD) activity was often markedly decreased in SC-muscle cultures while the activities of acetylcholinesterase and several other enzymes were little changed. Increased CAT activity was also observed when SC cultures were maintained in medium which had been conditioned by muscle cells or by undifferentiated cells from embryonic muscle. Muscle-conditioned medium (CM) did not affect the activities of SC cell GAD or acetylcholinesterase. Dilution or concentration of the CM directly affected its ability to increase SC CAT activity , as did the duration and timing of exposure of the SC cells to the CM. The medium could be conditioned by muscle cells in the presence or absence of serum, and remained effective after dialysis or heating to 58 degrees C. Membrane filtration data were consistent with the conclusion that the active material(s) in CM had a molecular weight in excess of 50,000 daltons. We conclude that large molecular weight material that is released by muscle cells is capable of producing a specific increase in CAT activity of SC cells.  相似文献   
36.
In contrast to animals, where polyamine (PA) catabolism efficiently converts spermine (Spm) to putrescine (Put), plants have been considered to possess a PA catabolic pathway producing 1,3-diaminopropane, Delta(1)-pyrroline, the corresponding aldehyde, and hydrogen peroxide but unable to back-convert Spm to Put. Arabidopsis (Arabidopsis thaliana) genome contains at least five putative PA oxidase (PAO) members with yet-unknown localization and physiological role(s). AtPAO1 was recently identified as an enzyme similar to the mammalian Spm oxidase, which converts Spm to spermidine (Spd). In this work, we have performed in silico analysis of the five Arabidopsis genes and have identified PAO3 (AtPAO3) as a nontypical PAO, in terms of homology, compared to other known PAOs. We have expressed the gene AtPAO3 and have purified a protein corresponding to it using the inducible heterologous expression system of Escherichia coli. AtPAO3 catalyzed the sequential conversion/oxidation of Spm to Spd, and of Spd to Put, thus exhibiting functional homology to the mammalian PAOs. The best substrate for this pathway was Spd, whereas the N(1)-acetyl-derivatives of Spm and Spd were oxidized less efficiently. On the other hand, no activity was detected when diamines (agmatine, cadaverine, and Put) were used as substrates. Moreover, although AtPAO3 does not exhibit significant similarity to the other known PAOs, it is efficiently inhibited by guazatine, a potent PAO inhibitor. AtPAO3 contains a peroxisomal targeting motif at the C terminus, and it targets green fluorescence protein to peroxisomes when fused at the N terminus but not at the C terminus. These results reveal that AtPAO3 is a peroxisomal protein and that the C terminus of the protein contains the sorting information. The overall data reinforce the view that plants and mammals possess a similar PA oxidation system, concerning both the subcellular localization and the mode of its action.  相似文献   
37.
Tudor staphylococcal nuclease (TSN; also known as Tudor‐SN, p100, or SND1) is a multifunctional, evolutionarily conserved regulator of gene expression, exhibiting cytoprotective activity in animals and plants and oncogenic activity in mammals. During stress, TSN stably associates with stress granules (SGs), in a poorly understood process. Here, we show that in the model plant Arabidopsis thaliana, TSN is an intrinsically disordered protein (IDP) acting as a scaffold for a large pool of other IDPs, enriched for conserved stress granule components as well as novel or plant‐specific SG‐localized proteins. While approximately 30% of TSN interactors are recruited to stress granules de novo upon stress perception, 70% form a protein–protein interaction network present before the onset of stress. Finally, we demonstrate that TSN and stress granule formation promote heat‐induced activation of the evolutionarily conserved energy‐sensing SNF1‐related protein kinase 1 (SnRK1), the plant orthologue of mammalian AMP‐activated protein kinase (AMPK). Our results establish TSN as a docking platform for stress granule proteins, with an important role in stress signalling.  相似文献   
38.
Polyamines (PAs) exert a protective effect against stress challenges, but their molecular role in this remains speculative. In order to detect the signaling role of apoplastic PA-derived hydrogen peroxide (H2O2) under abiotic stress, we developed a series of tobacco (Nicotiana tabacum cv Xanthi) transgenic plants overexpressing or downregulating apoplastic polyamine oxidase (PAO; S-pao and A-pao plants, respectively) or downregulating S-adenosyl-l-methionine decarboxylase (samdc plants). Upon salt stress, plants secreted spermidine (Spd) into the apoplast, where it was oxidized by the apoplastic PAO, generating H2O2. A-pao plants accumulated less H2O2 and exhibited less programmed cell death (PCD) than did wild-type plants, in contrast with S-pao and samdc downregulating plants. Induction of either stress-responsive genes or PCD was dependent on the level of Spd-derived apoplastic H2O2. Thus, in wild-type and A-pao plants, stress-responsive genes were efficiently induced, although in the latter at a lower rate, while S-pao plants, with higher H2O2 levels, failed to accumulate stress-responsive mRNAs, inducing PCD instead. Furthermore, decreasing intracellular PAs, while keeping normal apoplastic Spd oxidation, as in samdc downregulating transgenic plants, caused enhanced salinity-induced PCD. These results reveal that salinity induces the exodus of Spd into the apoplast, where it is catabolized by PAO, producing H2O2. The accumulated H2O2 results in the induction of either tolerance responses or PCD, depending also on the levels of intracellular PAs.  相似文献   
39.
Several in vivo studies have reported the presence of immunoreactive transforming growth factor-β's (TGF-β's) in testicular cells at defined stages of their differentiation. The most pronounced changes in TGF-β1 and TGF-β2 immunoreactivity occurred during spermatogenesis. In the present study we have investigated whether germ cells and Sertoli cells are able to secrete bioactive TGF-β's in vitro, using the CCl64 mink lung epithelial cell line as bioassay for the measurement of TGF-β. In cellular lysates, TGF-β bioactivity was only observed following heat-treatment, indicating that within these cells TGF-β is present in a latent form. To our surprise, active TGF-β could be detected in the culture supernatant of germ cells and Sertoli cells without prior heat-treatment. This suggests that these cells not only produce and release TGF-β in a latent form, but that they also release a factor which can convert latent TGF-β into its active form. Following heat-activation of these culture supernatant's, total TGF-β bioactivity increased 6- to 9-fold. Spermatocytes are the cell type that releases most bioactive TGF-β during a 24 h culture period, although round and elongated spermatids and Sertoli cells also secrete significant amounts of TGF-β. The biological activity of TGF-β could be inhibited by neutralizing antibodies against TGF-β1 (spermatocytes and round spermatids) and TGF-β2 (round and elongating spermatids). TGF-β activity in the Sertoli cell culture supernatant was inhibited slightly by either the TGF-β1 and TGF-β2 neutralizing antibody.These in vitro data suggest that germ cells and Sertoli cells release latent TGF-β's. Following secretion, the TGF-β's are converted to a biological active form that can interact with specific TGF-β receptors. These results strengthen the hypothesis that TGF-β's may play a physiological role in germ cell proliferation/differentiation and Sertoli cell function.  相似文献   
40.
Caloric restriction (CR) extends lifespan in various heterotrophic organisms ranging from yeasts to mammals, but whether a similar phenomenon occurs in plants remains unknown. Plants are autotrophs and use their photosynthetic machinery to convert light energy into the chemical energy of glucose and other organic compounds. As the rate of photosynthesis is proportional to the level of photosynthetically active radiation, the CR in plants can be modeled by lowering light intensity. Here, we report that low light intensity extends the lifespan in Arabidopsis through the mechanisms triggering autophagy, the major catabolic process that recycles damaged and potentially harmful cellular material. Knockout of autophagy‐related genes results in the short lifespan and suppression of the lifespan‐extending effect of the CR. Our data demonstrate that the autophagy‐dependent mechanism of CR‐induced lifespan extension is conserved between autotrophs and heterotrophs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号