首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   46篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   26篇
  2020年   15篇
  2019年   14篇
  2018年   20篇
  2017年   20篇
  2016年   23篇
  2015年   38篇
  2014年   44篇
  2013年   50篇
  2012年   67篇
  2011年   62篇
  2010年   34篇
  2009年   28篇
  2008年   42篇
  2007年   49篇
  2006年   24篇
  2005年   27篇
  2004年   35篇
  2003年   22篇
  2002年   14篇
  2001年   2篇
  2000年   7篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   3篇
  1982年   3篇
  1979年   2篇
  1975年   2篇
  1973年   3篇
  1971年   1篇
  1969年   2篇
  1961年   2篇
  1959年   2篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有750条查询结果,搜索用时 15 毫秒
51.
The “marine world” is endowed with diverse life forms. The life under the oceans is bestowed with a unique gene pool and characteristics owing to extreme conditions such as high salt concentration and temperature variations. The marine biodiversity is an extremely rich resource for the development of a wide array of applications in food, pharmaceuticals, cosmetics. Various forms of traditional knowledge, including traditional medicinal knowledge, have been silently developing over the centuries, with the coastal tribes in nations across the globe. Unfortunately, marine traditional knowledge has been underestimated both commercially and legally. It has still not gained its due importance at the international platform for sustainable use and development. An attempt has been made in the present study to collate information on marine traditional knowledge based medicine. Recent trends of marine bioprospecting by various nations including India have been discussed, followed by the study of legal provisions dealing with marine bioprospecting that aim at conservation and sustainable use of marine biodiversity and associated traditional knowledge. Convention of Biological Diversity, United Nations Convention on the Law of the Seas and World Intellectual Property Organization are the major international legal instruments that discuss the concepts of Prior Informed Consent, access and benefit sharing with regard to biopiracy and provide guidelines and limits for conducting marine scientific research.  相似文献   
52.
A thin, profusely branched, fast growing hairy root line of Panax quinquefolium (American ginseng) was established by co-culturing epicotyl explants with a wild type strain of Agrobacterium rhizogenes. The transformed roots grew by over 10-fold from the initial inoculum within 8 weeks. The crude ginsenosides content in the roots was about 0.2 g/g dry wt level up to the 10th week of culture. Ginsenosides Rb2, Rd, Re, Rf and Rg1 constituted 47–49% of the crude saponin fraction between 6 and 8 weeks of growth whereas, Rc ginsenoside was accumulated only after 9th weeks when the biomass started receding. PCR amplification analysis of the hairy roots confirmed their transgenic nature by showing the presence of Ri-TL DNA with rolA, rolB and rolC genes in their genome.  相似文献   
53.
Acetylcholine receptor channel gating is a propagated conformational cascade that links changes in structure and function at the transmitter binding sites in the extracellular domain (ECD) with those at a "gate" in the transmembrane domain (TMD). We used Phi-value analysis to probe the relative timing of the gating motions of alpha-subunit residues located near the ECD-TMD interface. Mutation of four of the seven amino acids in the M2-M3 linker (which connects the pore-lining M2 helix with the M3 helix), including three of the four residues in the core of the linker, changed the diliganded gating equilibrium constant (K(eq)) by up to 10,000-fold (P272 > I274 > A270 > G275). The average Phi-value for the whole linker was approximately 0.64. One interpretation of this result is that the gating motions of the M2-M3 linker are approximately synchronous with those of much of M2 (approximately 0.64), but occur after those of the transmitter binding site region (approximately 0.93) and loops 2 and 7 (approximately 0.77). We also examined mutants of six cys-loop residues (V132, T133, H134, F135, P136, and F137). Mutation of V132, H134, and F135 changed K(eq) by 2800-, 10-, and 18-fold, respectively, and with an average Phi-value of 0.74, similar to those of other cys-loop residues. Even though V132 and I274 are close, the energetic coupling between I and V mutants of these positions was small (< or =0.51 kcal mol(-1)). The M2-M3 linker appears to be the key moving part that couples gating motions at the base of the ECD with those in TMD. These interactions are distributed along an approximately 16-A border and involve about a dozen residues.  相似文献   
54.
Cajanus cajan rhizobial isolates were found to be unable to utilize iron bound to ferrichrome, desferrioxamine B or rhodotorulic acid, all being hydroxamate type siderophores. A broad host range expression vector containing the Escherichia coli fhuA gene, encoding the outer membrane receptor for Fe-ferrichrome, was constructed. The plasmid construct (pGR1), designed to express fhuA under the lac promoter of E. coli, complemented E. coli MB97 ΔfhuA mutant for ferri-ferrichrome utilization and also allowed Rhizobium spp. ST1 and Rhizobium spp. IC3123 to grow using iron bound to ferrichrome. Sensitivity to the antibiotic albomycin, transported via the FhuA receptor, was found in case of MB97 as well as rhizobial transformants harboring pGR1. The rhizobial transformants expressing fhuA showed growth stimulation when co-inoculated with Ustilago maydis, a fungal species known to produce ferrichrome under iron starved conditions. Growth stimulation was also observed in the presence of externally supplied ferrichrome. The significance of these findings in terms of the potential for improving the survivability of rhizobial bioinoculant strains in natural soils is discussed.  相似文献   
55.
Caloric restriction and genomic stability   总被引:1,自引:0,他引:1  
Caloric restriction (CR) reduces the incidence and progression of spontaneous and induced tumors in laboratory rodents while increasing mean and maximum life spans. It has been suggested that CR extends longevity and reduces age-related pathologies by reducing the levels of DNA damage and mutations that accumulate with age. This hypothesis is attractive because the integrity of the genome is essential to a cell/organism and because it is supported by observations that both cancer and immunological defects, which increase significantly with age and are delayed by CR, are associated with changes in DNA damage and/or DNA repair. Over the last three decades, numerous laboratories have examined the effects of CR on the integrity of the genome and the ability of cells to repair DNA. The majority of studies performed indicate that the age-related increase in oxidative damage to DNA is significantly reduced by CR. Early studies suggest that CR reduces DNA damage by enhancing DNA repair. With the advent of genomic technology and our increased understanding of specific repair pathways, CR has been shown to have a significant effect on major DNA repair pathways, such as NER, BER and double-strand break repair.  相似文献   
56.
Delivery of DNA and siRNA into mammalian cells is a powerful technique in treating various diseases caused by single gene defects. Herein, we report a highly efficient delivery system using 1,4-butanediol diglycidyl ether (bisepoxide) crosslinked polyethylenimine (PEI) nanoparticles (PN). The nanoparticle/DNA complexes (nanoplexes) exibited approximately 2.5- to 5.0-fold gene transfer efficacy and decreased cytotoxicity in cultured cell lines, compared to the native PEI (25 kDa) (gold standard) and commercially available transfection agents such as Lipofectamine 2000 and Fugene. The bisepoxide crosslinking results in change in amine ratio in PEI; however, it retains the net charge on PN unaltered. A series of nanoparticles obtained by varying the degree of crosslinking was found to be in the size range of 69-77 nm and the zeta potential varying from +35 to 40 mV. The proposed system was also found to deliver siRNA efficiently into HEK cells, resulting in approximately 70% suppression of the targetted gene (GFP).  相似文献   
57.
Down syndrome (DS) is the most prevalent chromosomal disorder, accounting for significant morbidity and mortality. Definitive diagnosis requires invasive amniocentesis, and current maternal serum-based testing requires a false-positive rate of about 5% to detect 85% of affected pregnancies. We have performed a comprehensive proteomic analysis to identify potential serum biomarkers to detect DS. First- and second-trimester maternal serum samples of DS and gestational age-matched controls were analyzed using multiple, complementary proteomic approaches, including fluorescence 2-dimensional gel electrophoresis (2D-DIGE), 2-dimensional liquid chromatography-chromatofocusing (2D-CF), multidimensional protein identification technology (MudPIT; LC/LC-MS/MS), and MALDI-TOF-MS peptide profiling. In total, 28 and 26 proteins were differentially present in first- and second-trimester samples, respectively. Of these, 19 were specific for the first trimester and 16 for the second trimester, and 10 were differentially present in both trimesters. Analysis of MALDI-TOF-MS peptide profiles with pattern-recognition software also discriminated between DS and controls in both trimesters, with an average recognition capability approaching 96%. A majority of the biomarkers identified are serum glycoproteins that may play a role in cellular differentiation and growth of fetus. Further characterization and quantification of these markers in a larger cohort of subjects may provide the basis for new tests for improved DS screening.  相似文献   
58.
Sequence heterogeneity at the ends of mature microRNAs (miRNAs) is well documented, but its effects on miRNA function are largely unexplored. Here we studied the impact of miRNA 5′-heterogeneity, which affects the seed region critical for target recognition. Using the example of miR-142-3p, an emerging regulator of the hematopoietic lineage in vertebrates, we show that naturally coexpressed 5′-variants (5′-isomiRs) can recognize largely distinct sets of binding sites. Despite this, both miR-142-3p isomiRs regulate exclusive and shared targets involved in actin dynamics. Thus, 5′-heterogeneity can substantially broaden and enhance regulation of one pathway. Other 5′-isomiRs, in contrast, recognize largely overlapping sets of binding sites. This is exemplified by two herpesviral 5′-isomiRs that selectively mimic one of the miR-142-3p 5′-isomiRs. We hypothesize that other cellular and viral 5′-isomiRs can similarly be grouped into those with divergent or convergent target repertoires, based on 5′-sequence features. Taken together, our results provide a detailed characterization of target recognition by miR-142-3p and its 5′-isomiR-specific viral mimic. We furthermore demonstrate that miRNA 5′-end variation leads to differential targeting and can thus broaden the target range of miRNAs.  相似文献   
59.
60.

Background

We have previously shown that ADP-induced TXA2 generation requires signaling from αIIbβ3 integrin in platelets. Here we observed that, unlike ADP, protease-activated receptor (PAR)-mediated TXA2 generation occurs independently of αIIbβ3. PAR agonists, but not ADP, activate G12/13 signaling pathways. Hence, we evaluated the role of these pathways in TXA2 generation.

Principal Findings

Inhibition of ADP-induced thromboxane generation by fibrinogen receptor antagonist SC57101 was rescued by co-stimulation of G12/13 pathways with YFLLRNP. This observation suggested an existence of a common signaling effector downstream of integrins and G12/13 pathways. Hence, we evaluated role of three potential tyrosine kinases; c-Src, Syk and FAK (Focal Adhesion Kinase) that are known to be activated by integrins. c-Src and Syk kinase did not play a role in ADP-induced functional responses in platelets. Selective activation of G12/13 pathways resulted in the activation of FAK, in the absence of integrin signaling. Interestingly, αIIbβ3-mediated FAK activation occurred in a Src family kinase (SFK)-independent manner whereas G12/13 pathway caused FAK activation in a SFK and RhoA-dependent manner. A FAK selective inhibitor TAE-226, blocked TXA2 generation. However, in comparison to WT mice, Pf4-Cre/Fak-Floxed mice did not show any difference in platelet TXA2 generation.

Conclusions

Therefore, we conclude that differential activation of FAK occurs downstream of Integrins and G12/13 pathways. However, the common effector molecule, possibly a tyrosine kinase downstream of integrins and G12/13 pathways contributing to TXA2 generation in platelets remains elusive.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号