首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   704篇
  免费   46篇
  2024年   2篇
  2023年   2篇
  2022年   4篇
  2021年   26篇
  2020年   15篇
  2019年   14篇
  2018年   20篇
  2017年   20篇
  2016年   23篇
  2015年   38篇
  2014年   44篇
  2013年   50篇
  2012年   67篇
  2011年   62篇
  2010年   34篇
  2009年   28篇
  2008年   42篇
  2007年   49篇
  2006年   24篇
  2005年   27篇
  2004年   35篇
  2003年   22篇
  2002年   14篇
  2001年   2篇
  2000年   7篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   6篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1985年   3篇
  1982年   3篇
  1979年   2篇
  1975年   2篇
  1973年   3篇
  1971年   1篇
  1969年   2篇
  1961年   2篇
  1959年   2篇
  1958年   2篇
  1957年   1篇
  1955年   1篇
排序方式: 共有750条查询结果,搜索用时 15 毫秒
21.
A systematic quantum mechanical study of the possible conformations and vibrational spectra of 2-amino 6-bromo 3-formylchromone has been reported. The equilibrium geometry, harmonic vibrational frequencies, infrared intensities and activities of Raman scattering were calculated by Hartree–Fock and density functional theory employing Becke's three-parameter (local, non-local and HF) hybrid exchange functionals with Lee–Yang–Parr co-relational (B3LYP) functionals using 6-311++G(d,p) basis set with complete relaxation in the potential energy surface. The calculated wavenumbers after proper scaling show a very good agreement with the observed values. The electrostatic potential mapped onto isodensity surface has been obtained. The natural bond orbital analysis has been carried out in order to study the intra-molecular bonding, interactions among bonds and delocalisation of unpaired electrons. The highest occupied molecular orbital–lowest unoccupied molecular orbital studies have been conducted in order to determine the way the molecule interacts with other species.  相似文献   
22.
In the present investigation, the polysaccharide/mucilage from waste of Abelmoscus esculentus by modification in hot extraction using two different solvents (Acetone, Methanol) were extracted, characterized and further compared with seaweed polysaccharide for their potential applications. The percentage yield, emulsifying capacity and swelling index of this mucilage were determined. The macro algae and okra waste, gave high % yield (22.2% and 8.6% respectively) and good emulsifying capacity (EC% = 52.38% and 54.76% respectively) with acetone, compared to methanol (11.3% and 0.28%; EC% = 50%) (PH = 7) while swelling index was greater with methanol than acetone extracts respectively. The infrared (I.R.) spectrum of the samples was recorded to investigate the chemical structure of mucilage. Thermal analysis of the mucilage was done with TGA (Thermal Gravimetric Analyzer) and DSC (Differential Scanning Calorimeter) which showed both okra and algal polysaccharide were thermostable hydrogels.  相似文献   
23.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   
24.
TRPM7 is a novel magnesium-nucleotide-regulated metal current (MagNuM) channel that is regulated by serum Mg2+ concentrations. Changes in Mg2+ concentration have been shown to alter cell proliferation in various cells; however, the mechanism and the ion channel(s) involved have not yet been identified. Here we demonstrate that TRPM7 is expressed in control and prostate cancer cells. Supplementation of intracellular Mg-ATP or addition of external 2-aminoethoxydiphenyl borate inhibited MagNuM currents. Furthermore, silencing of TRPM7 inhibited whereas overexpression of TRPM7 increased endogenous MagNuM currents, suggesting that these currents are dependent on TRPM7. Importantly, although an increase in the serum Ca2+/Mg2+ ratio facilitated Ca2+ influx in both control and prostate cancer cells, a significantly higher Ca2+ influx was observed in prostate cancer cells. TRPM7 expression was also increased in cancer cells, but its expression was not dependent on the Ca2+/Mg2+ ratio per se. Additionally, an increase in the extracellular Ca2+/Mg2+ ratio led to a significant increase in cell proliferation of prostate cancer cells when compared with control cells. Consistent with these results, age-matched prostate cancer patients also showed a subsequent increase in the Ca2+/Mg2+ ratio and TRPM7 expression. Altogether, we provide evidence that the TRPM7 channel has an important role in prostate cancer and have identified that the Ca2+/Mg2+ ratio could be essential for the initiation/progression of prostate cancer.  相似文献   
25.
Solanum lycopersicum and Solanum tuberosum are agriculturally important crop species as they are rich sources of starch, protein, antioxidants, lycopene, beta-carotene, vitamin C, and fiber. The genomes of S. lycopersicum and S. tuberosum are currently available. However the linear strings of nucleotides that together comprise a genome sequence are of limited significance by themselves. Computational and bioinformatics approaches can be used to exploit the genomes for fundamental research for improving their varieties. The comparative genome analysis, Pfam analysis of predicted reviewed paralogous proteins was performed. It was found that S. lycopersicum proteins belong to more families, domains and clans in comparison with S. tuberosum. It was also found that mostly intergenic regions are conserved in two genomes followed by exons, intron and UTR. This can be exploited to predict regions between genomes that are similar to each other and to study the evolutionary relationship between two genomes, leading towards the development of disease resistance, stress tolerance and improved varieties of tomato.  相似文献   
26.
Mycobacterium abscessus, a non-tuberculous rapidly growing mycobacterium, is recognized as an emerging human pathogen causing a variety of infections ranging from skin and soft tissue infections to severe pulmonary infections. Lack of an optimal treatment regimen and emergence of multi-drug resistance in clinical isolates necessitate the development of better/new drugs against this pathogen. The present study aims at identification and qualitative characterization of promising drug targets in M. abscessus using a novel hierarchical in silico approach, encompassing three phases of analyses. In phase I, five sets of proteins were mined through chokepoint, plasmid, pathway, virulence factors, and resistance genes and protein network analysis. These were filtered in phase II, in order to find out promising drug target candidates through subtractive channel of analysis. The analysis resulted in 40 therapeutic candidates which are likely to be essential for the survival of the pathogen and non-homologous to host, human anti-targets, and gut flora. Many of the identified targets were found to be involved in different metabolisms (viz., amino acid, energy, carbohydrate, fatty acid, and nucleotide), xenobiotics degradation, and bacterial pathogenicity. Finally, in phase III, the candidate targets were qualitatively characterized through cellular localization, broad spectrum, interactome, functionality, and druggability analysis. The study explained their subcellular location identifying drug/vaccine targets, possibility of being broad spectrum target candidate, functional association with metabolically interacting proteins, cellular function (if hypothetical), and finally, druggable property. Outcome of the present study could facilitate the identification of novel antibacterial agents for better treatment of M. abscesses infections.  相似文献   
27.
28.
29.
Due to the extensive applications of vanillin as flavored compound and increasing consumers concern for its natural and environment friendly mode of production, present work was focused on the selection of bacterial isolate capable of producing vanillin using eugenol biotransformation. Bacterial strain SMS1003 is evidenced as the potential strain for vanillin production and identified as Bacillus safensis (GeneBank accession no. MG561863) using biochemical tests and molecular phylogenic analysis of its 16S rDNA gene sequence. Molar yield of vanillin reached up to 10.7% (0.055?g/L) at 96?h of biotransformation using growing culture of B. safensis SMS1003 in following culture conditions: eugenol concentration 500?mg/L; temperature 37?°C; initial pH 7.0; inoculum volume 4%; volume of culture media 10%; and shaking speed 180?rpm. Vanillin was detected as the single metabolite with a molar yield of 26% (0.12?g/L) at 96?h using resting cells of B. safensis SMS1003. Product confirmation was based on spectral scan using photodiode array detector, Fourier-transform infrared spectroscopy, high-performance liquid chromatography, and mass spectroscopy.  相似文献   
30.
Declining fertility rates in both human and animals is a cause for concern. While many of the infertility cases are due to known causes, idiopathic infertility is reported in 30% of the infertile couples. In such cases, 18% of the infertile males carry antisperm antibodies (ASAs). Such data are lacking in livestock, wherein 20–30% of the animals are being culled due to low fertility. In males, the blood–testis barrier (BTB) and biomolecules in the semen provide an immuno‐tolerant microenvironment for spermatozoa as they traverse the immunologic milieu of both the male and female reproductive tracts. For example, insults from environmental contaminants, infections and inflammatory conditions are likely to impact the immune privilege state of the testis and fertility. The female mucosal immune system can recognize allogenic spermatozoa‐specific proteins affecting sperm kinematics and sperm‐zona binding leading to immune infertility. Elucidating the functions and pathways of the immune regulatory molecules associated with fertilization are prerequisites for understanding their impact on fertility. An insight into biomolecules associated with spermatozoal immune tolerance may generate inputs to develop diagnostic tools and modulate fertility. High‐throughput sequencing technologies coupled with bioinformatics analyses provides a path forward to define the array of molecules influencing pregnancy outcome. This review discusses the seminal immune regulatory molecules from their origin in the testis until they traverse the uterine environment enabling fertilization and embryonic development. Well‐designed experiments and the identification of biomarkers may provide a pathway to understand the finer details of reproductive immunology that will afford personalized therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号