首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   8篇
  2022年   2篇
  2021年   2篇
  2018年   2篇
  2016年   1篇
  2015年   8篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   8篇
  2010年   6篇
  2009年   3篇
  2008年   9篇
  2007年   1篇
  2006年   3篇
  2005年   4篇
  2004年   5篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1990年   3篇
  1989年   1篇
  1987年   3篇
  1985年   1篇
  1983年   1篇
  1981年   2篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1969年   2篇
  1961年   1篇
排序方式: 共有109条查询结果,搜索用时 14 毫秒
101.
The t(14;18) translocation in follicular lymphoma is one of the most common chromosomal translocations. Breaks in chromosome 18 are localized at the 3'-UTR of BCL2 gene or downstream and are mainly clustered in either the major breakpoint region or the minor breakpoint cluster region (mcr). The recombination activating gene (RAG) complex induces breaks at IgH locus of chromosome 14, whereas the mechanism of fragility at BCL2 mcr remains unclear. Here, for the first time, we show that RAGs can nick mcr; however, the mechanism is unique. Three independent nicks of equal efficiency are generated, when both Mg(2+) and Mn(2+) are present, unlike a single nick during V(D)J recombination. Further, we demonstrate that RAG binding and nicking at the mcr are independent of nonamer, whereas a CCACCTCT motif plays a critical role in its fragility, as shown by sequential mutagenesis. More importantly, we recapitulate the BCL2 mcr translocation and find that mcr can undergo synapsis with a standard recombination signal sequence within the cells, in a RAG-dependent manner. Further, mutation to the CCACCTCT motif abolishes recombination within the cells, indicating its vital role. Hence, our data suggest a novel, physiologically relevant, nonamer-independent mechanism of RAG nicking at mcr, which may be important for generation of chromosomal translocations in humans.  相似文献   
102.
The continuous monolayer of intestinal epithelial cells (IECs) lining the gut lumen functions as the site of nutrient absorption and as a physical barrier to prevent the translocation of microbes and associated toxic compounds into the peripheral vasculature. IECs also express host defense proteins such as intestinal alkaline phosphatase (IAP), which detoxify bacterial products and prevent intestinal inflammation. Our laboratory recently showed that IAP is enriched on vesicles that are released from the tips of IEC microvilli and accumulate in the intestinal lumen. Here, we show that these native "lumenal vesicles" (LVs) (1) contain catalytically active IAP that can dephosphorylate lipopolysaccharide (LPS), (2) cluster on the surface of native lumenal bacteria, (3) prevent the adherence of enteropathogenic E. coli (EPEC) to epithelial monolayers, and (4) limit bacterial population growth. We also find that IECs upregulate LV production in response to EPEC and other Gram-negative pathogens. Together, these results suggest that microvillar vesicle shedding represents a novel mechanism for distributing host defense machinery into the intestinal lumen and that microvillus-derived LVs modulate epithelial-microbial interactions.  相似文献   
103.
Vertebrate gastrulation involves the coordinated movements of populations of cells. These movements include cellular rearrangements in which cells polarize along their medio-lateral axes leading to cell intercalations that result in elongation of the body axis. Molecular analysis of this process has implicated the non-canonical Wnt/Frizzled signaling pathway that is similar to the planar cell polarity pathway (PCP) in Drosophila. Here we describe a zebrafish mutant, colgate (col), which displays defects in the extension of the body axis and the migration of branchiomotor neurons. Activation of the non-canonical Wnt/PCP pathway in these mutant embryos by overexpressing DeltaNdishevelled, rho kinase2 and van gogh-like protein 2 (vangl2) rescues the extension defects suggesting that col acts as a positive regulator of the non-canonical Wnt/PCP pathway. Further, we show that col normally regulates the caudal migration of nVII facial hindbrain branchiomotor neurons and that the mutant phenotype can be rescued by misexpression of vangl2 independent of the Wnt/PCP pathway. We cloned the col locus and found that it encodes histone deacetylase1 (hdac1). Our previous results and studies by others have implicated hdac1 in repressing the canonical Wnt pathway. Here, we demonstrate novel roles for zebrafish hdac1 in activating non-canonical Wnt/PCP signaling underlying axial extension and in promoting Wnt-independent caudal migration of a subset of hindbrain branchiomotor neurons.  相似文献   
104.
Nrf2, a central regulator of the cellular defense against oxidative stress and inflammation, participates in modulating hepatocyte proliferation during liver regeneration. It is not clear, however, whether Nrf2 regulates hepatocyte growth, an important cellular mechanism to regain the lost liver mass after partial hepatectomy (PH). To determine this, various analyses were performed in wild-type and Nrf2-null mice following PH. We found that, at 60 h post-PH, the vast majority of hepatocytes lacking Nrf2 reduced their sizes, activated hepatic progenitor markers (CD133, TWEAK receptor, and trefoil factor family 3), depleted HNF4α protein, and downregulated the expression of a group of genes critical for their functions. Thus, the identity of hepatocytes deficient in Nrf2 was transiently but massively impaired in response to liver mass loss. This event was associated with the coupling of protein depletion of hepatic HNF4α, a master regulator of hepatocyte differentiation, and concomitant inactivation of hepatic Akt1 and p70S6K, critical hepatocyte growth signaling molecules. We conclude that Nrf2 participates in maintaining newly regenerated hepatocytes in a fully differentiated state by ensuring proper regulation of HNF4α, Akt1, and p70S6K during liver regeneration.  相似文献   
105.
Epithelial cells lining the intestinal tract build an apical array of microvilli known as the brush border. Each microvillus is a cylindrical membrane protrusion that is linked to a supporting actin bundle by myosin-1a (Myo1a). Mice lacking Myo1a demonstrate no overt physiological symptoms, suggesting that other myosins may compensate for the loss of Myo1a in these animals. To investigate changes in the microvillar myosin population that may limit the Myo1a KO phenotype, we performed proteomic analysis on WT and Myo1a KO brush borders. These studies revealed that WT brush borders also contain the short-tailed class I myosin, myosin-1d (Myo1d). Myo1d localizes to the terminal web and striking puncta at the tips of microvilli. In the absence of Myo1a, Myo1d peptide counts increase twofold; this motor also redistributes along the length of microvilli, into compartments normally occupied by Myo1a. FRAP studies demonstrate that Myo1a is less dynamic than Myo1d, providing a mechanistic explanation for the observed differential localization. These data suggest that Myo1d may be the primary compensating class I myosin in the Myo1a KO model; they also suggest that dynamics govern the localization and function of different yet closely related myosins that target common actin structures.  相似文献   
106.
107.
Summary Effects of water content of the topsoil on the supply of manganese, zinc and copper to plants from an acid, siliceous sandy soil were investigated. The experiment was designed to provide a good supply of water and of nutrients other than those mentioned above at all times.Water content of the topsoil affected the root growth in that layer significantly. However, drying of the topsoil for as long as 42 days did not significantly affect the concentration of micronutrients in the shoots of oats, provided the plants did not experience water stress.Despite the acidic, siliceous sandy nature of the topsoil it showed a surprisingly high ability to render added manganese, zinc and copper unavailable. This phenomenon, probably mediated by organic matter, had a dominant effect on the exchangeable micronutrients in comparison to the effects due to fluctuations in soil water content.  相似文献   
108.
Summary A glasshouse experiment was conducted to study the effects of water content of the topsoil on the micronutrient nutrition of Italian ryegrass (Lolium multiflorum Lam.) growing in a siliceous sandy soil of marginal micronutrient status, with and without a supply of micronutrients at lower depths. The main objectives were to investigate whether micronutrient supplies would be sustained for the regrowth of defoliated grass after the topsoil had dried, and to assess the contribution made by small amounts of micronutrients in the subsoil to nutrient supply.In the absence of supply from deeper layers, topsoil drying rapidly induced deficiency of micronutrients, particularly of manganese, resulting in significant yield depression. When small amounts of micronutrients were present in a deeper, wet layer there was little reduction in yield after the topsoil had dried.The evidence suggests that, provided the roots had access to water in the subsoils, significant amounts of manganese, zinc and copper can be absorbed from topsoils as dry or drier than wilting point. Supply of micronutrients to the subsoil appears to have enhanced the efficiency of manganese absorption from dry topsoil.  相似文献   
109.
Expression of bovine pancreatic ribonuclease A in Escherichia coli   总被引:3,自引:0,他引:3  
A synthetic gene for bovine pancreatic ribonuclease A (RNase A) has been expressed in Escherichia coli as a fusion protein with beta-galactosidase linked by the tetrapeptide Ile-Glu-Gly-Arg. RNase A was cleaved from the fusion using factor Xa, and the resulting product purified and reconstituted. The isolated RNase A was chromatographically, catalytically, and immunologically identical with authentic RNase A. This work argues that the method suggested by Nagai and Thogersen [Nagai, K. & Thogersen, H. C. (1984) Nature (Lond.) 309, 810-812] for releasing fusion proteins is quite general, even when applied to particularly complicated expression problem. The procedure here makes RNase A available for the first time as a model for studying structure-function relationships in proteins using site-directed mutagenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号