首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2507篇
  免费   133篇
  国内免费   2篇
  2024年   6篇
  2023年   32篇
  2022年   27篇
  2021年   118篇
  2020年   67篇
  2019年   69篇
  2018年   95篇
  2017年   66篇
  2016年   92篇
  2015年   121篇
  2014年   136篇
  2013年   221篇
  2012年   204篇
  2011年   198篇
  2010年   110篇
  2009年   87篇
  2008年   111篇
  2007年   112篇
  2006年   102篇
  2005年   94篇
  2004年   98篇
  2003年   81篇
  2002年   70篇
  2001年   21篇
  2000年   15篇
  1999年   22篇
  1998年   17篇
  1997年   11篇
  1996年   12篇
  1995年   8篇
  1994年   19篇
  1993年   16篇
  1992年   10篇
  1991年   7篇
  1990年   9篇
  1988年   9篇
  1987年   12篇
  1986年   12篇
  1985年   10篇
  1984年   9篇
  1983年   8篇
  1982年   7篇
  1979年   9篇
  1977年   6篇
  1976年   6篇
  1973年   6篇
  1972年   5篇
  1971年   5篇
  1969年   5篇
  1968年   5篇
排序方式: 共有2642条查询结果,搜索用时 31 毫秒
81.
In Egypt, β-thalassemia is the most common hereditary hemolytic anemia. Cardiac dysfunction, secondary to iron overload with formation of oxygen free radicals, is the most common cause of death in β-thalassemia patients. This study was designed to determine whether the allelic genotype of apolipoprotein E (Apo E), which exhibits antioxidant properties, could represent a genetic risk factor for the development of left ventricular (LV) dysfunction in β-thalassemia major. Fifty Egyptian β-thalassemia major patients were subjected to echocardiography to assess LV function. Apo E genotyping by polymerase chain reaction restriction fragment length polymorphism (PCR-RFLP) was done for all patients in addition to 50 age and sex matched healthy control subjects. Patients were classified into three groups. Group I and II were clinically asymptomatic. Group II subjects had evidence of LV dilatation, while Group III patients had clinical and echocardiographic findings of LV failure. Apo E4 allele was significantly higher among Group II and III than in controls. In conclusion, Apo E4 allele can be considered as a genetic risk factor for LV dysfunctions in β-thalassemic patients. It could be used as predictive indicator for additional risk of LV failure, particularly in asymptomatic patients with LV dilatation, requiring a closer follow-up, to prevent further disease progression.  相似文献   
82.
ABSTRACT

Inhibitors of monoamine oxidase (MAO)-B have been used for many years in the therapy of Parkinson’s disease (PD). Owing to the safety concerns of the currently used agents, the discovery of novel scaffolds is of considerable interest. MAO-B inhibitory potential of rutin, a flavonoid derived from natural sources, has been established in experimental findings. Hence, the current study seeks to examine the interactions between rutin and crystal structure of human MAO-B enzyme. Molecular docking calculations, as well as molecular dynamics simulations, were employed to investigate the binding mode and the stability of the rutin/MAO-B complex. Energies of highest occupied/lowest unoccupied molecular orbitals were computed through DFT studies and used to calculate electron affinity, hardness, chemical potential, electronegativity, and electrophilicity index in order to investigate the capability of these parameters to influence the ligand–receptor interactions. It was found that rutin traverses both the entrance cavity and the substrate cavity, forcing the Ile-199 ‘gate’ to rotate into its open conformation. It results in the fusion of the two cavities of the MAO-B binding site and directly leads to better binding interactions. Results of the current study can be used for lead modification and development of novel drugs for the treatment of PD.  相似文献   
83.
Calcineurin is the only known calmodulin (CaM) activated protein phosphatase, which is involved in the regulation of numerous cellular and developmental processes and in calcium-dependent signal transduction. Although commonly assumed that CaM displaces the autoinhibitory domain (AID) blocking substrate access to its active site, the structural basis underlying activation remains elusive. We have created a fused ternary complex (CBA) by covalently linking three polypeptides: CaM, calcineurin regulatory B subunit (CnB) and calcineurin catalytic A subunit (CnA). CBA catalytic activity is comparable to that of fully activated native calcineurin in the presence of CaM. The crystal structure showed virtually no structural change in the active site and no evidence of CaM despite being covalently linked. The asymmetric unit contains four molecules; two parallel CBA pairs are packed in an antiparallel mode and the large cavities in crystal packing near the calcineurin active site would easily accommodate multiple positions of AID-bound CaM. Intriguingly, the conformation of the ordered segment of AID is not altered by CaM; thus, it is the disordered part of AID, which resumes a regular α-helical conformation upon binding to CaM, which is displaced by CaM for activation. We propose that the structural basis of calcineurin activation by CaM is through displacement of the disordered fragment of AID which otherwise impedes active site access.  相似文献   
84.
85.
The molecular basis of insulin resistance induced by HIV protease inhibitors (HPIs) remains unclear. In this study, Chinese hamster ovary cells transfected with high levels of human insulin receptor (CHO‐IR) and 3T3‐L1 adipocytes were used to elucidate the mechanism of this side effect. Indinavir and nelfinavir induced a significant decrease in tyrosine phosphorylation of the insulin receptor β‐subunit. Indinavir caused a significant increase in the phosphorylation of insulin receptor substrate‐1 (IRS‐1) on serine 307 (S307) in both CHO‐IR cells and 3T3‐L1 adipocytes. Nelfinavir also inhibited phosphorylation of Map/ERK kinase without affecting insulin‐stimulated Akt phosphorylation. Concomitantly, levels of protein tyrosine phosphatase 1B (PTP1B), suppressor of cytokines signaling‐1 and ‐3 (SOCS‐1 and ‐3), Src homology 2B (SH2B) and adapter protein with a pleckstrin homology domain and an SH2 domain (APS) were not altered significantly. When CHO‐IR cells were pre‐treated with sodium salicylate (NaSal), the effects of indinavir on tyrosine phosphorylation of the IR β‐subunit and phosphorylation of IRS‐1 at S307 were abrogated. These data suggest a potential role for the NFκB pathway in insulin resistance induced by HPIs. J. Cell. Biochem. 114: 1729–1737, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
86.
Thermoregulatory processes have long been implicated in the initiation of human sleep. In this paper, we review our own studies conducted over the last decade showing a crucial role for melatonin as a mediator between the thermoregulatory and arousal system in humans. Distal heat loss, via increased skin temperature, seems to be intimately coupled with increased sleepiness and sleep induction. Exogenous melatonin administration during the day when melatonin is essentially absent mimics the endogenous thermophysiological processes occurring in the evening and induces sleepiness. Using a cold thermic challenge test, it was shown that melatonin‐induced sleepiness occurs in parallel with reduction in the thermoregulatory set‐point (threshold); thus, melatonin may act as a circadian modulator of the thermoregulatory set‐point. In addition, an orthostatic challenge can partially block the melatonin‐induced effects, suggesting an important role of the sympathetic nervous system as a link between the thermoregulatory and arousal systems. A topographical analysis of finger skin temperature with infrared thermometry revealed that the most distal parts of the fingers, i.e., fingertips, represent the important skin regions for heat loss regulation, most probably via opening the arteriovenous anastomoses, and this is clearly potentiated by melatonin. Taken together, melatonin is involved in the fine‐tuning of vascular tone in selective vascular beds, as circulating melatonin levels rise and fall throughout the night. Besides the role of melatonin as “nature's soporific”, it can also serve as nature's nocturnal vascular modulator.  相似文献   
87.

Aims

Heat stress is a growing concern in crop production because of global warming. In many cropping systems heat stress often occurs simultaneously with other environmental stress factors such as mineral nutrient deficiencies. This study aimed to investigate the role of adequate magnesium (Mg) nutrition in mitigating the detrimental effects of heat stress on wheat (Triticum aestivum) and maize (Zea mays).

Methods

Wheat and maize plants were grown in solution culture with low or adequate Mg supply at 25/22 °C (light/dark). Half of the plants were, then, exposed to heat stress at 35/28 °C (light/dark). Development of leaf chlorosis and changes in root and shoot growth, chlorophyll and Mg concentrations as well as the activities of major antioxidative enzymes were quantified in the experimental plants. Additionally, maize plants were analyzed for the specific weights (e.g., dry or fresh weight per a given leaf surface area) and soluble carbohydrate concentrations of sink and source leaves.

Results

Visual leaf symptoms of Mg deficiency were aggravated in wheat and maize when exposed to heat stress. In both species, root growth was more sensitive to Mg deficiency than shoot growth, and the shoot-to-root ratios peaked when heat stress was combined with Mg deficiency. Magnesium deficiency markedly reduced soluble carbohydrate concentrations in young leaf; but resulted in substantial increase in source leaves. Magnesium deficiency also increased activities of antioxidative enzymes, especially when combined with heat stress. The highest activities of superoxide dismutase (up to 80 % above the control), glutathione reductase (up to 250 % above the control) and ascorbate peroxidase (up to 300 % above the control) were measured when Mg-deficient plants were subjected to heat, indicating stimulated formation of reactive oxygen species (ROS) in Mg deficient leaves under heat stress.

Conclusions

Magnesium deficiency increases susceptibility of wheat and maize plants to heat stress, probably by increasing oxidative cellular damage caused by ROS. Ensuring a sufficiently high Mg supply for crop plants through Mg fertilization is a critical factor for minimizing heat-related losses in crop production.  相似文献   
88.
During a survey of entomopathogenic nematodes (EPNs) in the eastern Black Sea region of Turkey in 2009–2012, a steinernematid species was recorded and isolated using the Galleria-baiting method. The isolate was identified as Steinernema kraussei based on its morphological and molecular properties. The analysis of the ITS rDNA sequence placed the Turkish population of S. kraussei in the “feltiae-kraussei” group in the clade that contains different isolates of the species. This is the first record of S. kraussei from Turkey. The efficacy of S. kraussei was tested on Agrotis segetum (Lepidoptera: Noctuidea) larvae at different densities (100, 300, and 500 infective juveniles (IJs) g−1 dry sand ) in laboratory conditions at 25 °C. The highest mortality (98%) was obtained with 500 IJs g−1 dry sand within 7 d after inoculation. Our results indicate that the new isolate is a highly promising biological control agent against A. segetum, one of the most serious soil pests of agricultural area and fruits worldwide.  相似文献   
89.
Polycomb-repressive complex 1 (PRC1)-mediated histone ubiquitylation plays an important role in aberrant gene silencing in human cancers and is a potential target for cancer therapy. Here we show that 2-pyridine-3-yl-methylene-indan-1,3-dione (PRT4165) is a potent inhibitor of PRC1-mediated H2A ubiquitylation in vivo and in vitro. The drug also inhibits the accumulation of all detectable ubiquitin at sites of DNA double-strand breaks (DSBs), the retention of several DNA damage response proteins in foci that form around DSBs, and the repair of the DSBs. In vitro E3 ubiquitin ligase activity assays revealed that PRT4165 inhibits both RNF2 and RING 1A, which are partially redundant paralogues that together account for the E3 ubiquitin ligase activity found in PRC1 complexes, but not RNF8 nor RNF168. Because ubiquitylation is completely inhibited despite the efficient recruitment of RNF8 to DSBs, our results suggest that PRC1-mediated monoubiquitylation is required for subsequent RNF8- and/or RNF168-mediated polyubiquitylation. Our results demonstrate the unique feature of PRT4165 as a novel chromatin-remodeling compound and provide a new tool for the inhibition of ubiquitylation signaling at DNA double-strand breaks.  相似文献   
90.
Wide adoption of direct-seeded rice practices has been hindered by poorly leveled fields, heavy rainfall and poor drainage, which cause accumulation of water in the fields shortly after sowing, leading to poor crop establishment. This is due to the inability of most rice varieties to germinate and reach the water surface under complete submergence. Hence, tolerance of anaerobic conditions during germination is an essential trait for direct-seeded rice cultivation in both rainfed and irrigated ecosystems. A QTL study was conducted to unravel the genetic basis of tolerance of anaerobic conditions during germination using a population derived from a cross between IR42, a susceptible variety, and Ma-Zhan Red, a tolerant landrace from China. Phenotypic data was collected based on the survival rates of the seedlings at 21 days after sowing of dry seeds under 10 cm of water. QTL analysis of the mapping population consisting of 175 F2:3 families genotyped with 118 SSR markers identified six significant QTLs on chromosomes 2, 5, 6, and 7, and in all cases the tolerant alleles were contributed by Ma-Zhan Red. The largest QTL on chromosome 7, having a LOD score of 14.5 and an R 2 of 31.7 %, was confirmed using a BC2F3 population. The QTLs detected in this study provide promising targets for further genetic characterization and for use in marker-assisted selection to rapidly develop varieties with improved tolerance to anaerobic condition during germination. Ultimately, this trait can be combined with other abiotic stress tolerance QTLs to provide resilient varieties for direct-seeded systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号