首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   775篇
  免费   69篇
  2021年   9篇
  2017年   7篇
  2016年   15篇
  2015年   23篇
  2014年   10篇
  2013年   23篇
  2012年   27篇
  2011年   34篇
  2010年   27篇
  2009年   22篇
  2008年   21篇
  2007年   33篇
  2006年   19篇
  2005年   17篇
  2004年   20篇
  2003年   26篇
  2002年   17篇
  2001年   22篇
  2000年   16篇
  1999年   14篇
  1998年   7篇
  1997年   11篇
  1996年   12篇
  1994年   15篇
  1993年   9篇
  1992年   30篇
  1991年   20篇
  1990年   18篇
  1989年   12篇
  1988年   12篇
  1987年   21篇
  1986年   15篇
  1985年   11篇
  1984年   9篇
  1982年   16篇
  1981年   10篇
  1978年   7篇
  1976年   7篇
  1975年   7篇
  1974年   16篇
  1973年   7篇
  1972年   15篇
  1971年   14篇
  1970年   9篇
  1969年   11篇
  1967年   17篇
  1966年   8篇
  1965年   8篇
  1962年   7篇
  1959年   6篇
排序方式: 共有844条查询结果,搜索用时 125 毫秒
51.
Viruses are obligate intracellular parasites, and their replication requires host cell functions. Although the size, composition, complexity, and functions encoded by their genomes are remarkably diverse, all viruses rely absolutely on the protein synthesis machinery of their host cells. Lacking their own translational apparatus, they must recruit cellular ribosomes in order to translate viral mRNAs and produce the protein products required for their replication. In addition, there are other constraints on viral protein production. Crucially, host innate defenses and stress responses capable of inactivating the translation machinery must be effectively neutralized. Furthermore, the limited coding capacity of the viral genome needs to be used optimally. These demands have resulted in complex interactions between virus and host that exploit ostensibly virus-specific mechanisms and, at the same time, illuminate the functioning of the cellular protein synthesis apparatus.The dependence of viruses on the host translation system imposes constraints that are central to virus biology and have led to specialized mechanisms and intricate regulatory interactions. Failure to translate viral mRNAs and to modulate host mRNA translation would have catastrophic effects on virus replication, spread, and evolution. Accordingly, a wide assortment of virus-encoded functions is dedicated to commandeering and controlling the cellular translation apparatus. Viral strategies to dominate the host translation machinery target the initiation, elongation, and termination steps and include mechanisms ranging from the manipulation of key eukaryotic translation factors to the evolution of specialized cis-acting elements that recruit ribosomes or modify genome-coding capacity. Because many of these strategies have likely been pirated from their hosts and because virus genetic systems can be manipulated with relative ease, the study of viruses has been a preeminent source of information on the mechanism and regulation of the protein synthesis machinery. In this article, we focus on select viruses that infect mammalian or plant cells and review the mechanisms they use to exploit and control the cellular protein synthesis machinery.  相似文献   
52.
Type-1 diabetes (T1D) increases systemic inflammation, bone loss, and risk for bone fractures. Levels of the anti-inflammatory cytokine interleukin-10 (IL-10) are decreased in T1D, however their role in T1D-induced osteoporosis is unknown. To address this, diabetes was induced in male IL-10 knockout (KO) and wild-type (WT) mice. Analyses of femur and vertebral trabecular bone volume fraction identified bone loss in T1D-WT mice at 4 and 12 weeks, which in T1D-IL-10-KO mice was further reduced at 4 weeks but not 12 weeks. IL-10 deficiency also increased the negative effects of T1D on cortical bone. Osteoblast marker osterix was decreased, while osteoclast markers were unchanged, suggesting that IL-10 promotes anabolic processes. MC3T3-E1 osteoblasts cultured under high glucose conditions displayed a decrease in osterix which was prevented by addition of IL-10. Taken together, our results suggest that IL-10 is important for promoting osteoblast maturation and reducing bone loss during early stages of T1D.  相似文献   
53.
RNA interference (RNAi) is a widely adopted tool for loss-of-function studies but RNAi results only have biological relevance if the reagents are appropriately mapped to genes. Several groups have designed and generated RNAi reagent libraries for studies in cells or in vivo for Drosophila and other species. At first glance, matching RNAi reagents to genes appears to be a simple problem, as each reagent is typically designed to target a single gene. In practice, however, the reagent–gene relationship is complex. Although the sequences of oligonucleotides used to generate most types of RNAi reagents are static, the reference genome and gene annotations are regularly updated. Thus, at the time a researcher chooses an RNAi reagent or analyzes RNAi data, the most current interpretation of the RNAi reagent–gene relationship, as well as related information regarding specificity (e.g., predicted off-target effects), can be different from the original interpretation. Here, we describe a set of strategies and an accompanying online tool, UP-TORR (for Updated Targets of RNAi Reagents; www.flyrnai.org/up-torr), useful for accurate and up-to-date annotation of cell-based and in vivo RNAi reagents. Importantly, UP-TORR automatically synchronizes with gene annotations daily, retrieving the most current information available, and for Drosophila, also synchronizes with the major reagent collections. Thus, UP-TORR allows users to choose the most appropriate RNAi reagents at the onset of a study, as well as to perform the most appropriate analyses of results of RNAi-based studies.  相似文献   
54.
55.
While the neural circuitry and physiology of the auditory system is well studied among vertebrates, far less is known about how the auditory system interacts with other neural substrates to mediate behavioral responses to social acoustic signals. One species that has been the subject of intensive neuroethological investigation with regard to the production and perception of social acoustic signals is the plainfin midshipman fish, Porichthys notatus, in part because acoustic communication is essential to their reproductive behavior. Nesting male midshipman vocally court females by producing a long duration advertisement call. Females localize males by their advertisement call, spawn and deposit all their eggs in their mate’s nest. As multiple courting males establish nests in close proximity to one another, the perception of another male’s call may modulate individual calling behavior in competition for females. We tested the hypothesis that nesting males exposed to advertisement calls of other males would show elevated neural activity in auditory and vocal-acoustic brain centers as well as differential activation of catecholaminergic neurons compared to males exposed only to ambient noise. Experimental brains were then double labeled by immunofluorescence (-ir) for tyrosine hydroxylase (TH), an enzyme necessary for catecholamine synthesis, and cFos, an immediate-early gene product used as a marker for neural activation. Males exposed to other advertisement calls showed a significantly greater percentage of TH-ir cells colocalized with cFos-ir in the noradrenergic locus coeruleus and the dopaminergic periventricular posterior tuberculum, as well as increased numbers of cFos-ir neurons in several levels of the auditory and vocal-acoustic pathway. Increased activation of catecholaminergic neurons may serve to coordinate appropriate behavioral responses to male competitors. Additionally, these results implicate a role for specific catecholaminergic neuronal groups in auditory-driven social behavior in fishes, consistent with a conserved function in social acoustic behavior across vertebrates.  相似文献   
56.
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S‐adenosylmethionine, which, after transferring its methyl group, is converted to S‐adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.  相似文献   
57.
58.
Multipotent stem cells in the body facilitate tissue regeneration, growth, and wound healing throughout life. The microenvironment in which they reside provides signals that direct these progenitors to proliferate, differentiate, or remain dormant; these factors include soluble molecules, the extracellular matrix, neighboring cells, and physical stimuli. Recent advances in the culture of embryonic stem cells and adult progenitors necessitate an increased understanding of these phenomena. Here, we summarize the interactions between stem cells and their local environment, drawing on in vivo observations and tissue culture studies. In addition, we describe novel methods of characterizing the effects of various environmental factors and review new techniques that enable scientists and engineers to more effectively direct stem cell fate.  相似文献   
59.
The Neurospora crassa mitochondrial tyrosyl-tRNA synthetase (CYT-18 protein) promotes the splicing of group I introns by helping the intron RNA fold into the catalytically active structure. The regions required for splicing include an idiosyncratic N-terminal extension, the nucleotide-binding fold domain, and the C-terminal RNA-binding domain. Here, we show that the idiosyncratic N-terminal region is in fact comprised of two functionally distinct parts: an upstream region consisting predominantly of a predicted amphipathic alpha-helix (H0), which is absent from bacterial tyrosyl-tRNA synthetases (TyrRSs), and a downstream region, which contains predicted alpha-helices H1 and H2, corresponding to features in the X-ray crystal structure of the Bacillus stearothermophilus TyrRS. Bacterial genetic assays with libraries of CYT-18 mutants having random mutations in the N-terminal region identified functionally important amino acid residues and supported the predicted structures of the H0 and H1 alpha-helices. The function of N and C-terminal domains of CYT-18 was investigated by detailed biochemical analysis of deletion mutants. The results confirmed that the N-terminal extension is required only for splicing activity, but surprisingly, at least in the case of the N. crassa mitochondrial (mt) large ribosomal subunit (LSU) intron, it appears to act primarily by stabilizing the structure of another region that interacts directly with the intron RNA. The H1/H2 region is required for splicing activity and TyrRS activity with the N. crassa mt tRNA(Tyr), but not for TyrRS activity with Escherichia coli tRNA(Tyr), implying a somewhat different mode of recognition of the two tyrosyl-tRNAs. Finally, a CYT-18 mutant lacking the N-terminal H0 region is totally defective in binding or splicing the N. crassa ND1 intron, but retains substantial residual activity with the mt LSU intron, and conversely, a CYT-18 mutant lacking the C-terminal RNA-binding domain is totally defective in binding or splicing the mt LSU intron, but retains substantial residual activity with the ND1 intron. These findings lead to the surprising conclusion that CYT-18 promotes splicing via different sets of interactions with different group I introns. We suggest that these different modes of promoting splicing evolved from an initial interaction based on the recognition of conserved tRNA-like structural features of the group I intron catalytic core.  相似文献   
60.
A series of (4-piperidinylphenyl)aminoethyl amides based on dipeptide anilines were synthesized and tested against cathepsin K, cathepsin L and cathepsin B. These new non-covalent inhibitors exhibited single-digit nM inhibition of the cysteine proteases. Compounds 3 and 7 demonstrated potency in both mouse and human osteoclast resorption assays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号